-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy paths5_lagenet_train.py
469 lines (376 loc) · 17.8 KB
/
s5_lagenet_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# date: 2021/11
# author:yushan zheng
# emai:[email protected]
import argparse
import os
import pickle
import shutil
import time
import numpy as np
from yacs.config import CfgNode
from tabulate import tabulate
from sklearn import metrics
import torch
import torch.nn.functional as F
from model import LAGENet
from loader import LaGraphLoader
from utils import *
def arg_parse():
parser = argparse.ArgumentParser(description='GCN-Hash arguments.')
parser.add_argument('--cfg', type=str,
default='',
help='The path of yaml config file')
parser.add_argument('--dataset', type=str,
default='')
parser.add_argument('--result-dir', type=str, default='./data')
parser.add_argument('--fold', type=int, default=-1, help='use all data for training if it is set -1')
parser.add_argument('--gpu', type=int, default=None)
parser.add_argument('--batch-size', type=int, default=64,
help='Batch size.')
parser.add_argument('--num-epochs', type=int, default=300,
help='Number of epochs to train.')
parser.add_argument('--num-workers', type=int, default=8,
help='Number of workers to load data.')
parser.add_argument('--lr', type=float, default=3e-4,
help='Learning rate.')
parser.add_argument('--wd', type=float, default=0.01,
help='Weight decay.')
parser.add_argument('--momentum', type=float, default=0.9,
help='momentum.')
parser.add_argument('--shuffle-train', default=False, action='store_true')
parser.add_argument('--label-id', type=int, default=1,
help='1: five categoriy task, 2: binary task')
parser.add_argument('--eval-model', type=str, default='',
help='provide a path of a trained model to evaluate the performance')
parser.add_argument('--eval-freq', type=int, default=20)
parser.add_argument('--print-freq', type=int, default=10)
parser.add_argument('--max-nodes', type=int, default=128,
help='Maximum number of nodes (ignore graghs with nodes exceeding the number.')
# Ablation settings
parser.add_argument('--disable-adj', action='store_true', default=False)
parser.add_argument('--disable-distance', action='store_true', default=False)
parser.add_argument('--node-aug', action='store_true', default=False)
# LAGE-Net config
parser.add_argument('--lage-depth', type=int, default=None)
parser.add_argument('--lage-heads', type=int, default=None)
parser.add_argument('--lage-dim', type=int, default=None)
parser.add_argument('--lage-mlp-dim', type=int, default=None)
parser.add_argument('--lage-dim-head', type=int, default=None)
parser.add_argument('--hash-bits', type=int, default=None)
parser.add_argument('--redo', default=False, action='store_true')
return parser.parse_args()
def main(args):
if args.cfg:
cfg = CfgNode(new_allowed=True)
cfg.merge_from_file(args.cfg)
merge_config_to_args(args, cfg)
args.num_classes = len(sub_type_map) if args.label_id == 1 else 2
graph_model_path = get_lage_path(args)
print(graph_model_path)
if not args.redo and os.path.exists(graph_model_path + '.csv')\
and (len(args.eval_model) == 0):
print(graph_model_path, 'exists. skip')
return 0
if not os.path.exists(graph_model_path):
os.makedirs(graph_model_path)
graph_list_dir = os.path.join(get_graph_list_path(args), args.fold_name)
# train graph data
train_set = LaGraphLoader(
os.path.join(graph_list_dir, 'train'),
max_node_number=args.max_nodes,
task_id=args.label_id,
disable_adj=args.disable_adj,
dist_embed_dim= args.lage_dim
)
train_sampler = torch.utils.data.sampler.WeightedRandomSampler(
train_set.get_weights(), len(train_set), replacement=True
)
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=args.batch_size, shuffle=args.shuffle_train,
num_workers=args.num_workers, sampler=train_sampler)
dataset_loader = torch.utils.data.DataLoader(
train_set, batch_size=args.batch_size, shuffle=args.shuffle_train,
num_workers=args.num_workers, sampler=None)
# validation graph data
val_path = os.path.join(graph_list_dir, 'val')
if not os.path.exists(val_path):
valid_loader = None
else:
valid_set = LaGraphLoader(val_path,
max_node_number=args.max_nodes,
task_id=args.label_id,
disable_adj=args.disable_adj,
dist_embed_dim= args.lage_dim
)
valid_loader = torch.utils.data.DataLoader(
valid_set, batch_size=args.batch_size, shuffle=False,
num_workers=args.num_workers, drop_last=False, sampler=None
)
# test graph data
test_path = os.path.join(graph_list_dir, 'test')
if not os.path.exists(test_path):
test_loader = None
else:
test_set = LaGraphLoader(test_path,
max_node_number=args.max_nodes,
task_id=args.label_id,
disable_adj=args.disable_adj,
dist_embed_dim= args.lage_dim
)
test_loader = torch.utils.data.DataLoader(
test_set, batch_size=args.batch_size, shuffle=False,
num_workers=args.num_workers, drop_last=False, sampler=None
)
args.input_dim = train_set.get_feat_dim()
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
# create model
model = LAGENet(
num_patches=args.max_nodes,
patch_dim=args.input_dim,
num_classes=args.num_classes,
num_hash_bits=args.hash_bits,
dim=args.lage_dim,
depth=args.lage_depth,
heads=args.lage_heads,
mlp_dim=args.lage_mlp_dim,
dim_head=args.lage_dim_head,
pos_embed=args.disable_distance,
pool = args.lage_pool,
)
if args.gpu is not None:
model = model.cuda(args.gpu)
else:
print('Do not support multi-GPU training.')
if args.eval_model and valid_loader is not None:
model_params = torch.load(args.eval_model, map_location='cpu')
model.load_state_dict(model_params['state_dict'])
label, predict = dataset_inference(valid_loader, model, args)
accs = accuracy(predict, label)
label = label.numpy()
predict = predict.numpy()
confuse_mat = metrics.confusion_matrix(label, np.argmax(predict, axis=1))
confuse_mat = np.asarray(confuse_mat,np.float)
for y in range(args.num_classes):
nc = np.sum(label==y) if np.sum(label==y)>0 else 1
confuse_mat[y,:] = confuse_mat[y,:]/nc
with open(os.path.join(graph_model_path, 'eval.csv'), 'w') as f:
for cn in range(confuse_mat.shape[0]):
f.write(',{:.3f}'.format(confuse_mat[cn,cn]))
f.write('\n')
with open(os.path.join(graph_model_path, 'eval.pkl'), 'wb') as f:
pickle.dump({'acc':accs[0].numpy(), 'cm':confuse_mat, 'num':np.bincount(label)}, f)
return 0
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=25, gamma=0.7)
with open(graph_model_path + '.csv', 'a') as f:
f.write('epc, T, acc, mic, mac, V, val, mic, mac, p@5, p@20, MAP, MRR, R5, T, acc, mic, mac, p@5, p@20, MAP, MRR, R5, SUB\n')
for epoch in range(args.num_epochs):
begin_time = time.time()
train(train_loader, model, optimizer, epoch, args)
scheduler.step()
best_acc1 = 0
if (epoch+1) % args.eval_freq == 0:
train_acc, train_preds, train_codes, train_labels = dataset_inference(dataset_loader, model, args)
val_acc,val_preds, val_codes, val_labels = dataset_inference(valid_loader, model, args)
test_acc, test_preds, test_codes, test_labels = dataset_inference(test_loader, model, args)
# evaluate classification
_, train_auc = evaluate_cls(train_preds, train_labels, args.num_classes, prefix='Train')
_, val_auc = evaluate_cls(val_preds, val_labels, args.num_classes, prefix='Val')
test_cm, test_auc = evaluate_cls(test_preds, test_labels, args.num_classes, prefix='Test')
# evaluate retrieval
val_rm = evaluate_ret(val_codes[::10], val_labels[::10], train_codes, train_labels, prefix='Val')
test_rm = evaluate_ret(test_codes[::10], test_labels[::10], train_codes, train_labels, prefix='Test')
with open(graph_model_path + '.csv', 'a') as f:
f.write('{:02d}, T, {:.3f},{:.3f},{:.3f}, V, {:.3f},{:.3f},{:.3f},{:.3f},{:.3f},{:.3f},{:.3f},{:.3f}, T, {:.3f},{:.3f},{:.3f},{:.3f},{:.3f},{:.3f},{:.3f},{:.3f}, SUB'.format(
epoch,
train_acc, train_auc['micro'], train_auc['macro'],
val_acc, val_auc['micro'], val_auc['macro'], val_rm['ap5'], val_rm['ap20'], val_rm['map'], val_rm['mrr'], val_rm['r5'],
test_acc, test_auc['micro'], test_auc['macro'], test_rm['ap5'], test_rm['ap20'], test_rm['map'], test_rm['mrr'], test_rm['r5'],
))
for cn in range(test_cm.shape[0]):
f.write(',{:.3f}'.format(test_cm[cn, cn]))
f.write('\n')
model_path = os.path.join(graph_model_path, 'lage_model_ep{}.pth.tar'.format(epoch + 1))
torch.save({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
}, model_path)
shutil.copy(model_path, os.path.join(graph_model_path, 'checkpoint.pth.tar'))
code_path = os.path.join(graph_model_path, 'lage_code_ep{}.pkl'.format(epoch + 1))
with open(code_path, 'wb') as f:
pickle.dump(
{'train_code':train_codes, 'val_code':val_codes, 'test_code':test_codes,
'train_label':train_labels, 'val_label':val_labels, 'test_label':test_labels,}, f
)
def train(train_loader, model, optimizer, epoch, args):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
cls_losses = AverageMeter('Loss1', ':.4e')
hash_losses = AverageMeter('Loss2', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top2 = AverageMeter('Acc@2', ':6.2f')
progress = ProgressMeter(len(train_loader), batch_time, data_time, cls_losses, hash_losses, top1,
top2, prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for i, data in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if args.gpu is not None:
feats = data[0].float().cuda(args.gpu, non_blocking=True)
adj = data[1].float().cuda(args.gpu, non_blocking=True)
de = data[2].float().cuda(args.gpu, non_blocking=True)
masks = data[3].int().cuda(args.gpu, non_blocking=True)
target = data[4].cuda(args.gpu, non_blocking=True)
one_hot = torch.zeros(feats.size(0), args.num_classes).cuda(args.gpu).scatter_(1, target.unsqueeze(1), 1)
# compute output
preds, hash_codes = model(feats, adj, de, masks)
'''
Here, we append a classification loss function to accelerate
the training of the network and meanwhile enable it to identify the tissue.
'''
cls_loss = cls_loss_func(preds, target)
hash_loss = hash_loss_func(hash_codes, one_hot, model.get_weights())
loss = hash_loss + cls_loss
# measure accuracy and record loss
acc1, acc2 = accuracy(preds, target, topk=(1, 2))
cls_losses.update(cls_loss.item(), feats.size(0))
hash_losses.update(hash_loss.item(), feats.size(0))
top1.update(acc1[0], feats.size(0))
top2.update(acc2[0], feats.size(0))
# compute gradient
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.print(i)
def evaluate_cls(y_preds, y_labels, num_classes=None, prefix='Eval'):
if num_classes is None:
num_classes = max(y_labels) + 1
auc = multi_auc(y_labels, y_preds, args.num_classes)
y_labels = y_labels.numpy()
y_preds = y_preds.numpy()
confuse_mat = metrics.confusion_matrix(
y_labels, np.argmax(y_preds, axis=1))
confuse_mat = np.asarray(confuse_mat, float)
values = [prefix, auc['micro'], auc['macro']]
headers = ['Classification', 'micro auc', 'macro auc']
for y in range(max(y_labels)+1):
confuse_mat[y, :] = confuse_mat[y, :]/np.sum(y_labels == y)
values.append(confuse_mat[y, y])
headers.append(str(y))
print(tabulate([values,], headers, tablefmt="grid"))
return confuse_mat, auc
def evaluate_ret(query_code, query_label, db_code, db_label, prefix='Eval'):
_, correct = retrieval(query_code, query_label, db_code, db_label)
correct = correct.numpy()
ap_5 = average_precision(correct, ret_num=5)
ap_20 = average_precision(correct, ret_num=20)
mAP = mean_average_precision(correct)[-1]
mRR = mean_reciprocal_rank(correct)
r5 = recall_at_n(correct, ret_num=5)
print(tabulate([[prefix, ap_5, ap_20, mAP, mRR, r5]],
headers=['CBIR', 'p@5', 'p@20', 'MAP', 'MRR', 'R5'], tablefmt="grid")
)
return {'ap5': ap_5, 'ap20': ap_20, 'map': mAP, 'mrr': mRR, 'r5': r5}
def dataset_inference(dataset_loader, model, args):
batch_time = AverageMeter('Time', ':6.3f')
cls_losses = AverageMeter('Loss1', ':.4e')
hash_losses = AverageMeter('Loss2', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top2 = AverageMeter('Acc@2', ':6.2f')
progress = ProgressMeter(len(dataset_loader), batch_time, cls_losses, hash_losses, top1, top2,
prefix='Inference: ')
# switch to evaluate mode
model.train()
y_preds = []
y_labels = []
y_codes = []
end = time.time()
with torch.no_grad():
for i, data in enumerate(dataset_loader):
if args.gpu is not None:
feats = data[0].float().cuda(args.gpu, non_blocking=True)
adj = data[1].float().cuda(args.gpu, non_blocking=True)
de = data[2].float().cuda(args.gpu, non_blocking=True)
masks = data[3].int().cuda(args.gpu, non_blocking=True)
target = data[4].cuda(args.gpu, non_blocking=True)
one_hot = torch.zeros(feats.size(0), args.num_classes).cuda(args.gpu).scatter_(1, target.unsqueeze(1), 1)
# compute output
preds, hash_codes = model(feats, adj, de, masks)
cls_loss = cls_loss_func(preds, target)
hash_loss = hash_loss_func(hash_codes, one_hot, model.get_weights())
y_preds.append(preds.cpu().data)
y_labels.append(target.cpu().data)
y_codes.append(hash_codes.cpu().data)
# measure accuracy and record loss
acc1, acc2 = accuracy(preds, target, topk=(1, 2))
cls_losses.update(cls_loss.item(), feats.size(0))
hash_losses.update(hash_loss.item(), feats.size(0))
top1.update(acc1[0], feats.size(0))
top2.update(acc2[0], feats.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.print(i)
# TODO: this should also be done with the ProgressMeter
print(' * Acc@1 {top1.avg:.3f} Acc@2 {top2.avg:.3f}'
.format(top1=top1, top2=top2))
y_preds = torch.cat(y_preds)
y_codes = torch.cat(y_codes)
y_labels = torch.cat(y_labels)
return top1.avg, y_preds, y_codes, y_labels
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, *meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def print(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def cls_loss_func(pred, label):
return F.cross_entropy(pred, label)
def hash_loss_func(features, label, hash_weights=None):
hash_bits = features.size()[1]
cross_sim_mat = torch.matmul(features, features.T) / hash_bits
cross_label_mat = torch.matmul(label, label.T)
cross_label_mat[cross_label_mat<1]=-1
loss = (cross_sim_mat - cross_label_mat).pow(2).mean()
loss_org = (hash_weights.matmul(hash_weights.T) - torch.eye(hash_bits).to(hash_weights.device)).pow(2).mean()
return loss + 0.01*loss_org
if __name__ == "__main__":
args = arg_parse()
main(args)