-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_fast.py
163 lines (127 loc) · 5.71 KB
/
train_fast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# config
import sys
import time
import os
import numpy as np
import torch
from config import config
import net.networks as networks
from eval.Estimator_fast import Estimator
from options.train_options import TrainOptions
from Dataset.DatasetConstructor_fast import TrainDatasetConstructor,EvalDatasetConstructor
opt = TrainOptions().parse()
# Mainly get settings for specific datasets
setting = config(opt)
log_file = os.path.join(setting.model_save_path, opt.dataset_name+'.log')
log_f = open(log_file, "w")
# Data loaders
train_dataset = TrainDatasetConstructor(
setting.train_num,
setting.train_img_path,
setting.train_gt_map_path,
mode=setting.mode,
dataset_name=setting.dataset_name,
device=setting.device,
is_random_hsi=setting.is_random_hsi,
is_flip=setting.is_flip,
fine_size=opt.fine_size
)
eval_dataset = EvalDatasetConstructor(
setting.eval_num,
setting.eval_img_path,
setting.eval_gt_map_path,
mode=setting.mode,
dataset_name=setting.dataset_name,
device=setting.device)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, shuffle=True, batch_size=setting.batch_size, num_workers=opt.nThreads, drop_last=True)
def my_collfn(batch):
img_path = [item[0] for item in batch]
imgs = [item[1] for item in batch]
gt_map = [item[2] for item in batch]
class_id = [item[3] for item in batch]
gt_H = [item[4] for item in batch]
gt_W = [item[5] for item in batch]
pH = [item[6] for item in batch]
pW = [item[7] for item in batch]
bz = len(batch)
gt_H = torch.stack(gt_H, 0)
gt_W = torch.stack(gt_W, 0)
pH = torch.stack(pH, 0)
pW = torch.stack(pW, 0)
gt_h_max = torch.max(gt_H)
gt_w_max = torch.max(gt_W)
ph_max = torch.max(pH)
pw_max = torch.max(pW)
ph_min, idx_h = torch.min(pH, dim=0) # get the minimum index of image by h
pw_min, idx_w = torch.min(pW, dim=0)
imgs_new = torch.zeros(bz, 9, 3, ph_max, pw_max) # bz * 9 * c * gth_max * gtw_max
gt_map_new = torch.zeros(bz, 1, 1, gt_h_max, gt_w_max)
# put map
for i in range(bz):
imgs_new[i, :, :, :pH[i], :pW[i]] = imgs[i]
# h, w
gt_map_new[i, :, :, :gt_H[i], :gt_W[i]] = gt_map[i]
class_id = torch.stack(class_id, 0)
return img_path, imgs_new, gt_map_new, class_id, ph_min, pw_min, idx_h, idx_w
eval_loader = torch.utils.data.DataLoader(dataset=eval_dataset, batch_size=2, collate_fn=my_collfn)
# model construct
net = networks.define_net(opt.net_name)
net = networks.init_net(net, gpu_ids=opt.gpu_ids)
criterion = torch.nn.MSELoss(reduction='sum').to(setting.device) # first device is ok
estimator = Estimator(opt, setting, eval_loader, criterion=criterion)
optimizer = networks.select_optim(net, opt)
step = 0
eval_loss, eval_mae, eval_rmse = [], [], []
base_mae_sha, base_mae_shb, base_mae_qnrf, base_mae_nwpu = opt.base_mae.split(',')
base_mae_sha = float(base_mae_sha)
base_mae_shb = float(base_mae_shb)
base_mae_qnrf = float(base_mae_qnrf)
base_mae_nwpu = float(base_mae_nwpu)
for epoch_index in range(setting.epoch):
# eval
if epoch_index % opt.eval_per_epoch == 0 and epoch_index > opt.start_eval_epoch:
print('Evaluating step:', str(step), '\t epoch:', str(epoch_index))
validate_MAE, validate_RMSE, validate_loss, time_cost, pred_mae, pred_mse = estimator.evaluate(net, False) # pred_mae and pred_mse are for seperate datasets
eval_loss.append(validate_loss)
eval_mae.append(validate_MAE)
eval_rmse.append(eval_rmse)
log_f.write(
'In step {}, epoch {}, loss = {}, eval_mae = {}, eval_rmse = {}, mae_SHA = {}, mae_SHB = {}, mae_QNRF = {}, mae_NWPU = {}, mse_SHA = {}, mse_SHB = {}, mse_QNRF = {}, mse_NWPU = {}, time cost eval = {}s\n'
.format(step, epoch_index, validate_loss, validate_MAE, validate_RMSE, pred_mae[0], pred_mae[1], pred_mae[2], pred_mae[3],
pred_mse[0], pred_mse[1], pred_mse[2], pred_mse[3], time_cost))
log_f.flush()
# save model with epoch and MAE
# Two kinds of conditions, we save models
save_now = False
if pred_mae[0] < base_mae_sha and pred_mae[1] < base_mae_shb and pred_mae[2] < base_mae_qnrf and pred_mae[3] < base_mae_nwpu:
save_now = True
if save_now:
best_model_name = setting.model_save_path + "/MAE_" + str(round(validate_MAE, 2)) + \
"_MSE_" + str(round(validate_RMSE, 2)) + '_mae_' + str(round(pred_mae[0], 2)) + \
'_' + str(round(pred_mae[1], 2)) + '_' + str(round(pred_mae[2], 2)) + '_' + str(round(pred_mae[3], 2)) + '_mse_' + str(round(pred_mse[0], 2)) + \
'_' + str(round(pred_mse[1], 2)) + '_' + str(round(pred_mse[2], 2)) + '_' + str(round(pred_mse[3], 2)) + \
'_Ep_' + str(epoch_index) + '.pth'
if len(opt.gpu_ids) > 0 and torch.cuda.is_available():
torch.save(net.module.cpu().state_dict(), best_model_name)
net.cuda(opt.gpu_ids[0])
else:
torch.save(net.cpu().state_dict(), best_model_name)
time_per_epoch = 0
for train_img, train_gt, class_id in train_loader:
# put data to setting.device
train_img = train_img.to(setting.device)
train_gt = train_gt.to(setting.device)
net.train()
x, y = train_img, train_gt
start = time.time()
prediction = net(x)
loss = criterion(prediction, y)
optimizer.zero_grad()
loss.backward()
loss_item = loss.detach().item()
optimizer.step()
step += 1
end = time.time()
time_per_epoch += end - start
if step % opt.print_step == 0:
print("Step:{:d}\t, Epoch:{:d}\t, Loss:{:.4f}".format(step, epoch_index, loss_item))