-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMathf.cs
398 lines (340 loc) · 15.1 KB
/
Mathf.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
using ElfKingdom;
namespace SkillZ
{
public class Mathf
{
// Returns the sine of angle /f/ in radians.
public static float Sin(float f) { return (float)System.Math.Sin(f); }
// Returns the cosine of angle /f/ in radians.
public static float Cos(float f) { return (float)System.Math.Cos(f); }
// Returns the tangent of angle /f/ in radians.
public static float Tan(float f) { return (float)System.Math.Tan(f); }
// Returns the arc-sine of /f/ - the angle in radians whose sine is /f/.
public static float Asin(float f) { return (float)System.Math.Asin(f); }
// Returns the arc-cosine of /f/ - the angle in radians whose cosine is /f/.
public static float Acos(float f) { return (float)System.Math.Acos(f); }
// Returns the arc-tangent of /f/ - the angle in radians whose tangent is /f/.
public static float Atan(float f) { return (float)System.Math.Atan(f); }
// Returns the angle in radians whose ::ref::Tan is @@y/x@@.
public static float Atan2(float y, float x) { return (float)System.Math.Atan2(y, x); }
// Returns square root of /f/.
public static float Sqrt(float f) { return (float)System.Math.Sqrt(f); }
// Returns the absolute value of /f/.
public static float Abs(float f) { return (float)System.Math.Abs(f); }
// Returns the absolute value of /value/.
public static int Abs(int value) { return System.Math.Abs(value); }
/// *listonly*
public static float Min(float a, float b) { return a < b ? a : b; }
// Returns the smallest of two or more values.
public static float Min(params float[] values)
{
int len = values.Length;
if (len == 0)
return 0;
float m = values[0];
for (int i = 1; i < len; i++)
{
if (values[i] < m)
m = values[i];
}
return m;
}
/// *listonly*
public static int Min(int a, int b) { return a < b ? a : b; }
// Returns the smallest of two or more values.
public static int Min(params int[] values)
{
int len = values.Length;
if (len == 0)
return 0;
int m = values[0];
for (int i = 1; i < len; i++)
{
if (values[i] < m)
m = values[i];
}
return m;
}
/// *listonly*
public static float Max(float a, float b) { return a > b ? a : b; }
// Returns largest of two or more values.
public static float Max(params float[] values)
{
int len = values.Length;
if (len == 0)
return 0;
float m = values[0];
for (int i = 1; i < len; i++)
{
if (values[i] > m)
m = values[i];
}
return m;
}
/// *listonly*
public static int Max(int a, int b) { return a > b ? a : b; }
// Returns the largest of two or more values.
public static int Max(params int[] values)
{
int len = values.Length;
if (len == 0)
return 0;
int m = values[0];
for (int i = 1; i < len; i++)
{
if (values[i] > m)
m = values[i];
}
return m;
}
// Returns /f/ raised to power /p/.
public static float Pow(float f, float p) { return (float)System.Math.Pow(f, p); }
// Returns e raised to the specified power.
public static float Exp(float power) { return (float)System.Math.Exp(power); }
// Returns the logarithm of a specified number in a specified base.
public static float Log(float f, float p) { return (float)System.Math.Log(f, p); }
// Returns the natural (base e) logarithm of a specified number.
public static float Log(float f) { return (float)System.Math.Log(f); }
// Returns the base 10 logarithm of a specified number.
public static float Log10(float f) { return (float)System.Math.Log10(f); }
// Returns the smallest integer greater to or equal to /f/.
public static float Ceil(float f) { return (float)System.Math.Ceiling(f); }
// Returns the largest integer smaller to or equal to /f/.
public static float Floor(float f) { return (float)System.Math.Floor(f); }
// Returns /f/ rounded to the nearest integer.
public static float Round(float f) { return (float)System.Math.Round(f); }
// Returns the smallest integer greater to or equal to /f/.
public static int CeilToInt(float f) { return (int)System.Math.Ceiling(f); }
// Returns the largest integer smaller to or equal to /f/.
public static int FloorToInt(float f) { return (int)System.Math.Floor(f); }
// Returns /f/ rounded to the nearest integer.
public static int RoundToInt(float f) { return (int)System.Math.Round(f); }
// Returns the sign of /f/.
public static float Sign(float f) { return f >= 0F ? 1F : -1F; }
// The infamous ''3.14159265358979...'' value (RO).
public const float PI = (float)System.Math.PI;
// Degrees-to-radians conversion constant (RO).
public const float Deg2Rad = PI * 2F / 360F;
// Radians-to-degrees conversion constant (RO).
public const float Rad2Deg = 1F / Deg2Rad;
// Clamps a value between a minimum float and maximum float value.
public static float Clamp(float value, float min, float max)
{
if (value < min)
value = min;
else if (value > max)
value = max;
return value;
}
// Clamps value between min and max and returns value.
// Set the position of the transform to be that of the time
// but never less than 1 or more than 3
//
public static int Clamp(int value, int min, int max)
{
if (value < min)
value = min;
else if (value > max)
value = max;
return value;
}
// Clamps value between 0 and 1 and returns value
public static float Clamp01(float value)
{
if (value < 0F)
return 0F;
else if (value > 1F)
return 1F;
else
return value;
}
// Interpolates between /a/ and /b/ by /t/. /t/ is clamped between 0 and 1.
public static float Lerp(float a, float b, float t)
{
return a + (b - a) * Clamp01(t);
}
// Interpolates between /a/ and /b/ by /t/ without clamping the interpolant.
public static float LerpUnclamped(float a, float b, float t)
{
return a + (b - a) * t;
}
// Same as ::ref::Lerp but makes sure the values interpolate correctly when they wrap around 360 degrees.
public static float LerpAngle(float a, float b, float t)
{
float delta = Repeat((b - a), 360);
if (delta > 180)
delta -= 360;
return a + delta * Clamp01(t);
}
// Moves a value /current/ towards /target/.
static public float MoveTowards(float current, float target, float maxDelta)
{
if (Mathf.Abs(target - current) <= maxDelta)
return target;
return current + Mathf.Sign(target - current) * maxDelta;
}
// Same as ::ref::MoveTowards but makes sure the values interpolate correctly when they wrap around 360 degrees.
static public float MoveTowardsAngle(float current, float target, float maxDelta)
{
float deltaAngle = DeltaAngle(current, target);
if (-maxDelta < deltaAngle && deltaAngle < maxDelta)
return target;
target = current + deltaAngle;
return MoveTowards(current, target, maxDelta);
}
// Interpolates between /min/ and /max/ with smoothing at the limits.
public static float SmoothStep(float from, float to, float t)
{
t = Mathf.Clamp01(t);
t = -2.0F * t * t * t + 3.0F * t * t;
return to * t + from * (1F - t);
}
//*undocumented
public static float Gamma(float value, float absmax, float gamma)
{
bool negative = false;
if (value < 0F)
negative = true;
float absval = Abs(value);
if (absval > absmax)
return negative ? -absval : absval;
float result = Pow(absval / absmax, gamma) * absmax;
return negative ? -result : result;
}
// Loops the value t, so that it is never larger than length and never smaller than 0.
public static float Repeat(float t, float length)
{
return Clamp(t - Mathf.Floor(t / length) * length, 0.0f, length);
}
// PingPongs the value t, so that it is never larger than length and never smaller than 0.
public static float PingPong(float t, float length)
{
t = Repeat(t, length * 2F);
return length - Mathf.Abs(t - length);
}
// Calculates the ::ref::Lerp parameter between of two values.
public static float InverseLerp(float a, float b, float value)
{
if (a != b)
return Clamp01((value - a) / (b - a));
else
return 0.0f;
}
// Calculates the shortest difference between two given angles.
public static float DeltaAngle(float current, float target)
{
float delta = Mathf.Repeat((target - current), 360.0F);
if (delta > 180.0F)
delta -= 360.0F;
return delta;
}
//My custom functions here -- not from Unity!
public static float GetAngle(MapObject l1, MapObject l2)
{
int yDifference = (l1.GetLocation().Row - l2.GetLocation().Row);
float dir = 0;
if (yDifference == 0)
{
dir = 90;
}
else
{
dir = Atan((l1.GetLocation().Col - l2.GetLocation().Col) / yDifference) * 180 / PI;
}
if (dir < 0)
{
dir += 180;
}
if (l1.GetLocation().Col < l2.GetLocation().Col)
{
dir += 180;
}
return dir;
}
//Given a location, an angle, and a distance, we can get a new location
public static Location GetNewLocationFromLocation(MapObject source, float angle, float length)
{
length += 2;
angle = angle * Deg2Rad;
Location newLocation = new Location((int)(length * Cos(angle) + source.GetLocation().Row), (int)(length * Sin(angle) + source.GetLocation().Col));
return newLocation;
//return source.GetLocation().Towards(newLocation, length - 2); //doing this for potentially smoother locations
}
public static bool CirclesCollision(MapObject circle1, int radius1, MapObject circle2, int radius2)
{
return Pow(circle1.GetLocation().Col - circle2.GetLocation().Col, 2) + Mathf.Pow(circle2.GetLocation().Row - circle1.GetLocation().Row, 2) < Pow(radius1 + radius2, 2);
}
public static bool CircleLineCollision(MapObject circle, int radius, MapObject lineStart, MapObject lineEnd)
{
//Ripped from Stack Overflow (https://stackoverflow.com/questions/37224912/circle-line-segment-collision), converted from JavaScript to C#
Location v1 = new Location(lineEnd.GetLocation().Row - lineStart.GetLocation().Row, lineEnd.GetLocation().Col - lineStart.GetLocation().Col);
Location v2 = new Location(lineStart.GetLocation().Row - circle.GetLocation().Row, lineStart.GetLocation().Col - circle.GetLocation().Col);
float b = (v1.Col * v2.Col + v1.Row * v2.Row);
float c = 2 * (v1.Col * v1.Col + v1.Row * v1.Row);
b *= -2;
float d = Sqrt(b * b - 2 * c * (v2.Col * v2.Col + v2.Row * v2.Row - radius * radius));
return !float.IsNaN(d); //if d is a valid number, there is a collision
/*if (d != d) //if is NaN
{
return false; //no intercept
}*/
//Rom: this code below is for finding the intercept location. We just want to know if there is a collision, and we dont really care where it happens, so whatever.
//If in the future we will need this, then remember that this code below has not been converted to C# yet!
/*float u1 = (b - d) / c; // these represent the unit distance of point one and two on the line
float u2 = (b + d) / c;
retP1 = { }; // return points
retP2 = { }
ret = []; // return array
if (u1 <= 1 && u1 >= 0)
{ // add point if on the line segment
retP1.x = line.p1.x + v1.x * u1;
retP1.y = line.p1.y + v1.y * u1;
ret[0] = retP1;
}
if (u2 <= 1 && u2 >= 0)
{ // second add point if on the line segment
retP2.x = line.p1.x + v1.x * u2;
retP2.y = line.p1.y + v1.y * u2;
ret[ret.length] = retP2;
}
return ret;*/
}
/*function inteceptCircleLineSeg(circle, line){
var a, b, c, d, u1, u2, ret, retP1, retP2, v1, v2;
v1 = {};
v2 = {};
v1.x = line.p2.x - line.p1.x;
v1.y = line.p2.y - line.p1.y;
v2.x = line.p1.x - circle.center.x;
v2.y = line.p1.y - circle.center.y;
b = (v1.x * v2.x + v1.y * v2.y);
c = 2 * (v1.x * v1.x + v1.y * v1.y);
b *= -2;
d = Math.sqrt(b * b - 2 * c * (v2.x * v2.x + v2.y * v2.y - circle.radius * circle.radius));
if(isNaN(d)){ // no intercept
return [];
}
u1 = (b - d) / c; // these represent the unit distance of point one and two on the line
u2 = (b + d) / c;
retP1 = {}; // return points
retP2 = {}
ret = []; // return array
if(u1 <= 1 && u1 >= 0){ // add point if on the line segment
retP1.x = line.p1.x + v1.x * u1;
retP1.y = line.p1.y + v1.y * u1;
ret[0] = retP1;
}
if(u2 <= 1 && u2 >= 0){ // second add point if on the line segment
retP2.x = line.p1.x + v1.x * u2;
retP2.y = line.p1.y + v1.y * u2;
ret[ret.length] = retP2;
}
return ret;
}*/
public static bool IsLocationOnRightOfLine(Location lineStart, Location lineEnd, Location location)
{
float d = (location.Col - lineStart.Col) * (lineEnd.Row - lineStart.Row) - (location.Row - lineStart.Row) * (lineEnd.Col - lineStart.Col);
return d < 0;
}
}
}