-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAdjacency Graph-v0.0.3.py
645 lines (531 loc) · 25.3 KB
/
Adjacency Graph-v0.0.3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
# -*- coding: utf-8 -*-
"""
Created on Fri Aug 30 15:59:14 2019
Last modified on Oct. 7 10:07 2019
@author:
"""
"""
Ontology based adjacency graph
"""
import copy
import cv2 # Open webcam to capture images and store them.
# import keras
# from keras.preprocessing import image
# import numpy as np
# from keras import backend as K
# import keras.applications
# from keras.applications import resnet50
import pickle # Store and retrieve knowledge base in the form of file.
# K.clear_session()
# model = keras.applications.resnet50.ResNet50(include_top=True, weights='imagenet', input_tensor=None, input_shape=None,
# pooling=None, classes=1000)
class Vertex:
""" Vertex structure for a graph
@ Members: 'name'
'state': A list storing previous and current states of this object
'content': A set storing contents of this object if it is not a type of motion
'category': category this object belongs to
'img_path': file path where storing images of this object
"""
__slots__ = '_element', '_name', '_state', '_contents', '_category', '_img_path'
def __init__(self, x=None, name=None, state=None, contents=None, category=None, imgpath=None):
self._element = x
self._name = name
self._state = state
self._contents = contents
self._category = category
self._img_path = imgpath
def get_element(self):
"""Return element associated with this vertex"""
return self.element
def set_img_path(self, path):
self.img_path = path
def get_img_path(self):
return self.img_path
def __str__(self):
string = '+ ' + '- ' * 20 + '+' + '\n'
string += '|' + 15 * ' ' + 'Object Node' + 15 * ' ' + '|' + '\n'
string += '| ' + 'Object name: ' + self._name + (27 - len(self._name)) * ' ' + '|' + '\n'
string += '| ' + 'Object category: ' + self._category + (23 - len(self._category)) * ' ' + '|' + '\n'
substring1 = ''
if self._state != None:
string += '| ' + 'Object current state: ' + self._state[-1] + (18 - len(self._state[-1])) * ' ' + '|' + '\n'
if len(self._state) >= 1:
for i in range(len(self._state) - 1):
substring1 += '| ' + 'Object history state {}'.format(i) + ': ' + self._state[i] + (16 - len(
self._state[i])) * ' ' + '|' + '\n'
string += substring1
substring2 = ''
if self._contents != None:
for i in range(len(self._contents)):
substring2 += '| ' + 'Object contents: ' + self._contents[i] + (28 - len(
self._contents[i])) * ' ' + '|' + '\n'
else:
substring2 = '| ' + 'Object contents: None' + 19 * ' ' + '|' + '\n'
string += substring2
string += '+ ' + '- ' * 20 + '+' + '\n'
return string
def __hash__(self): # Allow vertex to be a map/set key
return hash(id(self))
def __eq__(self, other):
return self._name == other._name and self._state == other._state and self._contents == other._contents and self._category == other._category and self._img_path == other._img_path
class Edge:
"""Edge structure for a graph.
Every edge represents a motions which consists of utensils and motions.
"""
# The origin(an object with initial states) goes through the motions and
# will then become destination(the same object with new states).
#
# The private variable 'motions' is a list storing utensil-motion pair. It consists of 'utensils' and 'motions', which means these 'utensils' impose effects
# on 'origin' with thess very 'motions'. For example: (Knife, Cut), (Blender, blend)
__slots__ = ('_origin', '_destination', '_motions')
def __init__(self, u, v, motions_pairs=None):
self._origin = u
self._destination = v
if motions_pairs is None:
self._motions = []
else:
self._motions = copy.deepcopy(motions_pairs)
def add_motions(self, pairs):
""" add a new motions to this edge"""
self._motions += pairs
def display_motions(self):
for i in range(len(self._motions)):
print('Motion {}:'.format(i), self._motions[i][1]._name, 'with', self._motions[i][0]._name)
def get_endpoint(self):
"""Return (u, v) tuple"""
return (self._origin, self._destination)
def get_opposite(self, v):
"""Return the vertex that is opposite to v on this edge"""
if v is self._origin:
return self._destination
else:
return self._origin
def __hash__(self):
"""Allow edge to be a map/set key."""
return hash((self._origin, self._destination))
def __str__(self):
string1 = '+' + ' -' * 20 + ' +' + '\n'
string2 = '| ' + ' Edge {}'.format(self._element) + ' |\n'
substring = self._origin._name + '(' + self._origin._state[-1] + ')' + ' to ' \
+ self._destination._name + '(' + self._destination._state[-1] + ')'
string3 = '| ' + substring + (len(string1) - len(substring) - 4) * ' ' + '|\n'
string4 = '+' + ' -' * 20 + ' +' + '\n'
string = string1 + string2 + string3 + string4
return string
class Graph:
"""Representation of a simple graph using adjacency map."""
def __init__(self, title='Untitled', directed=False):
"""Create an empty directional graph (Default: undirected).
The graph is directed if optional parameter is set to True."""
self._outgoing = {} # Secondary_map dict storing outgoing edges with vertices as keys, secondary_map as values
# Only create second map for directed graghs; Use alias for undirected
# Secondary_map dict storing incident edges with vertices as keys, secondary_map as values
self._incident = {} if directed else self._outgoing
self.title = title
self.recipe = set()
def is_directed(self):
"""Return True if this is a directed graph; False if undirected."""
return self._incident is not self._outgoing
def vertex_count(self):
"""Return the number of vertices in the graph."""
return len(self._outgoing)
def object_amount(self):
return self.vertex_count()
def vertices(self):
"""Return an iteration of vertices in the graph"""
return self._incident.keys()
def edge_count(self, is_only_direction=True):
"""Return the number of edges in the graph"""
total = 0
for u in self._outgoing:
for v in self._outgoing[u]:
total += len(self._outgoing[u][v])
# For undirected graghs, make sure not to double count edges
return total if self.is_derected() else total // 2
def process_amount(self):
return self.edge_count()
def edges(self):
"""Return a set of all edges in the graph"""
result = set() # Use set to avoid double counting edges in undirected graph
for secondary_map in self._outgoing.values():
result.update(secondary_map.values())
return result
def get_edges(self, u, v):
"""Return the edge from u to v, or None if not adjacent"""
return self._outgoing[u].get(v)
def degree(self, v, incident=True):
"""Return the number of edges incident to vertex v in the graph.
if graph is directed, optional parameter used to count outgoing edges from v"""
opt = self._incident if incident == True else self._outgoing
return len(opt[v])
def incident_edges(self, v):
"""Return all edges incident to vertex v in the graph.
If graph is directed, optional parameter used to request incident edges"""
for edge in self._incident[v].values():
yield edge
def outgoing_edges(self, v):
"""Return all edges incident to vertex v in the graph.
If graph is directed, optional parameter used to request incident edges"""
for edge in self._outgoing[v].values():
yield edge
def insert_vertex(self, v):
""" Insert a vertex"""
if v._category == 'Recipe':
self.recipe.add(v)
self._incident[v] = {}
if self.is_directed() == True:
self._outgoing[v] = {}
def insert_incident_edge(self, u, v, e=None):
""" Insert the edge e incident from u to v"""
if e is None:
e = Edge(u, v)
else:
for it in self._incident[v].values():
if e in it:
print('The edge to be inserted already existed')
return
# (self._outgoing[u]).update({v: e}) # [v]=e
# (self._incident[v]).update({u: e}) # [u]=e
if len(self._outgoing[u]) == 0:
self._outgoing[u].update({v: [e]})
else:
if v in self._outgoing[u]:
(self._outgoing[u][v]).append(e)
else:
(self._outgoing[u][v]) = [e]
if len(self._incident[v]) == 0:
self._incident[v].update({u: [e]})
else:
if u in self._incident[v]:
(self._incident[v][u]).append(e)
else:
self._incident[v][u] = [e]
def remove_vertex(self, v): # Computational complexity: O(deg(v))
""" Remove vertex v and all edges connected to it"""
try:
if v not in self._incident:
raise Exception
if self.is_derected():
for it in self._incident[v].keys(): # Delete all processes generating this object
self._outgoing[it].pop(v)
self._incident.pop(v)
for it in self._outgoing[v].keys(): # Delete all processes generating the object next to this object
self._incident[it].pop(v)
self._outgoing.pop(v)
else:
for it in self._incident[v].keys():
self._incident[it].pop(v)
self._incident.pop(v)
if v in self.recipe:
self.recipe.remove(v)
except Exception as e:
print('Vertex v is not a member of this graph!')
def remove_edge(self, u, v, e=None): # Computational complexity: O(1)
""" Remove the edge e connecting u with v if e is not None;
Remove all edges connecting u with v if e is None
"""
try:
if e is None: # Remove all edges connecting u with v
if v in self._incident[u]:
self._incident[u].pop(v)
self._outgoing[v].pop(u)
elif v in self._outgoing[u]:
self._outgoing[u].pop(v)
self._incident[v].pop(u)
return True
else: # Remove the edge e connecting u with v
for i in range(len(self._outgoing[u][v])):
if e is self._outgoing[u][v][i]:
(self._outgoing[u][v]).remove(e)
return True
for i in range(len(self._incident[u][v])):
if e is self._incident[u][v][i]:
(self._incident[u][v]).remove(e)
return True
raise Exception
except Exception as e:
print('No edge connecting u with v!')
return False
def DFSTraverse(self, u, is_complete=False):
""" Depth-first search from vertex u.
Return a dict with visited vertices as keys and their discovering edges as values
if the argument is_complete is False, the DF-search will only be implemented once from u, thus some vertices may not be visited;
if the is_complete is True, the DF-search will be implemented until every vertices are visited"""
# visited_dict acts as a mechanism for recognizing visited vertices, with
# visited vertices as keys and their discovering edges as values.
# Newly visited vertices will be added to the dict
search_path_list = []
visited_dict = {u: None}
path1 = [u]
self.DFS(u, visited_dict, path1)
search_path_list.append(path1)
if is_complete:
for vertex in self.vertices():
if vertex not in visited_dict:
path = [vertex]
visited_dict[vertex] = None
self.DFS(vertex, visited_dict, path)
search_path_list.append(path)
return search_path_list
def DFS(self, u, visited_dict, path):
""" Implement DFS of the unvisited portion of graph g starting at vertex u."""
# print(u)
for v in self._incident[u].keys():
if v not in visited_dict:
path.append(v)
visited_dict[v] = self._incident[u][v]
self.DFS(v, visited_dict, path)
def construct_path(self, head, tail, visited_dict):
""" """
path = []
if tail in visited_dict:
path.append(tail)
cur = tail
while cur is not head:
e = visited_dict[cur]
parent = e.get_opposite(cur)
path.append(parent)
cur = parent
path.reverse()
return path
def display_processes(self, v=None):
""" Given the target recipe v, find all functional units belonging to recipe v.
This function uses BFS to find all functional units.
Functional units are the steps needed to accomplish the given target recipe
"""
if v is None:
for recipe_vertex in self.recipe:
print('\033[22;34;0m ------------- {} -------------- \033[0m'.format(recipe_vertex._name))
self.__BFS_find_gradients(recipe_vertex)
else:
print('\033[22;34;0m ------------- {} -------------- \033[0m'.format(v._name))
self.__BFS_find_gradients(v)
def __BFS_find_gradients(self, v):
level = {v}
while len(level) > 0: # If not reaching the lowest level, continue to BFS
next_level = set()
for u in level:
output_name = u._name
for motion_vertex in self._incident[u].keys(): # find its parent nodes, which are action verteices
string = ''
utensil_name = ''
for input_vertex in self._incident[motion_vertex].keys(): # find the parent nodes of discovered action vertices, which are object vertices
if input_vertex._category == 'Utensil':
utensil_name = input_vertex._name
else:
string += '{}({}) '.format(input_vertex._name, input_vertex._state[-1])
next_level.add(input_vertex)
string += '>>> {} {} >>> {}({})\n'.format(motion_vertex._name, utensil_name, output_name,
u._state[-1])
print(string)
level = next_level
def add_process(self, process_list):
""" Merge new processes(Graph) to current graph.
param: process_list is a list storing new process.
Each process is a small graph which consists of only one outcome , one motion, one input and one utensil
"""
for process in process_list:
self.__add_functional_unit(process)
def add_recipe(self, recipe):
""" merge a new recipe(Graph) to this graph.
Firstly, the new recipe is divided into single process units, and then these process
units will """
if recipe is self:
return
self.__add_functional_unit(recipe)
self.recipe.clear()
for v in self.vertices():
if len(self._outgoing[v]) == 0:
self.recipe.add(v)
# Not available
def search_in_vertices(self, v, vertices):
found_vertex = None
for u in self.vertices():
if v == u:
found_vertex = u
break
return found_vertex
def __add_functional_unit(self, fu):
for v in fu.vertices():
if v._category == 'Motion': # Insert motion vertex first
current_vertices = self.vertices()
motion = copy.deepcopy(v)
self.insert_vertex(motion)
for input in fu._incident[v].keys():
found_vertex = self.search_in_vertices(input, current_vertices)
if found_vertex is None:
new_input = copy.deepcopy(input)
self.insert_vertex(new_input)
self.insert_incident_edge(new_input, motion)
else:
self.insert_incident_edge(found_vertex, motion)
for outcome in fu._outgoing[v].keys():
found_vertex = self.search_in_vertices(outcome, current_vertices)
if found_vertex is None:
new_outcome = copy.deepcopy(outcome)
self.insert_vertex(new_outcome)
self.insert_incident_edge(motion, new_outcome)
else:
self.insert_incident_edge(motion, found_vertex)
def BFSTraverse(self, s, visited_dict):
""" Perform BFS of the unvisited portion of graph g starting at vertex s.
visited_dict is a dict mapping each vertex to the edge that was used to visit it
(s should be mapped to None prior to the call)
Newly visited vertices will be added to the dict
"""
level = [s]
while len(level) > 0:
next_level = [] # Prepare to gather newly found vertices
for u in level:
for v in self._incident[u].keys():
if v not in visited_dict:
visited_dict[v] = self._incident[u][v]
next_level.append(v)
level = next_level
# Minimum spanning tree, not yet completed
def prim(self, u):
""" Compute a minimum spanning tree of weighted graph g.
Return a list of edges that compreise the MST (in arbitrary order)"""
pass
def __str__(self):
width = 40
string = '+ ' + '- ' * width + '+' + '\n'
title = 'Graph: {}'.format(self.title)
gap = int(width - len(title) / 2)
title_string = '| ' + gap * ' ' + title + gap * ' ' + ' |\n'
string += title_string
list_string = ''
for start_p in self._outgoing.keys():
for end_p in self._outgoing[start_p].keys():
for process_index in range(len(self._outgoing[start_p][end_p])):
temp_edge = self._outgoing[start_p][end_p][process_index]
# for motion_index in range(len(temp_edge._motions)):
# if start_p._category != 'Motion' and end_p._category != 'Motion':
# seq_string = '{}({}) >>> {} {} >>> {}({})'.format(start_p._name, start_p._state[-1],
# temp_edge._motions[motion_index][1]._name,
# temp_edge._motions[motion_index][0]._name,
# end_p._name, end_p._state[-1])
#
# elif start_p._category == 'Motion' and end_p._category != 'Motion':
# seq_string = '{} --> {}({})'.format(start_p._name, end_p._name,
# end_p._state[-1])
# elif start_p._category != 'Motion' and end_p._category == 'Motion':
# seq_string = '{}({}) --> {}'.format(start_p._name, start_p._state[-1],
# end_p._name)
#
# gap = int(width - len(seq_string) // 2)
# substring = '| ' + gap * ' ' + seq_string + gap * ' ' + ' |\n'
# list_string += substring
if start_p._category != 'Motion' and end_p._category != 'Motion':
seq_string = '{}({}) >>>>>> {}({})'.format(start_p._name, start_p._state[-1],
end_p._name, end_p._state[-1])
elif start_p._category == 'Motion' and end_p._category != 'Motion':
seq_string = '{} --> {}({})'.format(start_p._name, end_p._name,
end_p._state[-1])
elif start_p._category != 'Motion' and end_p._category == 'Motion':
seq_string = '{}({}) --> {}'.format(start_p._name, start_p._state[-1],
end_p._name)
gap = int(width - len(seq_string) // 2)
substring = '| ' + gap * ' ' + seq_string + gap * ' ' + ' |\n'
list_string += substring
string += list_string
string += '+ ' + '- ' * width + '+' + '\n'
return string
def merge_graph(r1, r2):
"""Merge two subgraphs to create a mixed graph"""
Merge = Graph(directed=r1.is_directed())
Merge.add_recipe(r1)
Merge.add_recipe(r2)
return Merge
def save_KB(g, filename):
""" Save a knowledge base to a local file """
with open(filename, 'wb') as f:
pickle.dump(g, f) # 存入知识图谱到本地存储
def load_KB(filename):
""" Load a knowledge base from a local file """
with open(filename, 'rb') as f:
g = Graph(directed=True)
g = pickle.load(f)
return g
# Test code below
knife = Vertex(x=1, name='Knife', state=['Clean'], contents=None, category='Utensil')
blender = Vertex(x=2, name='Blender', state=['Clean'], contents=None, category='Utensil')
apple = Vertex(x=3, name='Apple', state=['Unchopped'], contents=None, category='Fruit')
bowl = Vertex(x=4, name='Bowl', state=['Empty'], contents=None, category='Container')
salad_sauce = Vertex(x=5, name='Salad_sauce', state=['Fluid'], contents=None, category='Seasoning')
salad_sauce_container = Vertex(x=6, name='Salad_sauce_container', state=['Full'], contents=[salad_sauce],
category='Seasoning')
salad = Vertex(x=7, name='Salad', state=['Enough'], contents=None, category='Recipe')
hand = Vertex(x=8, name='Hand', state=['Clean'], contents=None, category='Utensil')
cut = Vertex(x=1, name='Cut with', category='Motion')
blend = Vertex(x=2, name='Blend with', category='Motion')
squeeze = Vertex(x=3, name='Squeeze with', category='Motion')
pick_and_place = Vertex(x=4, name='Pick_and_place in/with', category='Motion')
pick_and_place1 = Vertex(x=4, name='Pick_and_place in/with', category='Motion')
pick_and_place2 = Vertex(x=4, name='Pick_and_place in/with', category='Motion')
dirty_knife = Vertex(x=1, name='Knife', state=['Clean', 'Dirty'], contents=None, category='Utensil')
chopped_apple = Vertex(x=2, name='Apple', state=['Unchopped', 'Chopped'], contents=None, category='Fruit')
bowl_apple = Vertex(x=3, name='Bowl', state=['Non-empty'], contents=[chopped_apple], category='MotionResult')
bowl_apple_salad = Vertex(x=4, name='Bowl', state=['Non-empty'], contents=[chopped_apple, salad],
category='MotionResult')
g1 = Graph(directed=True)
g2 = Graph(directed=True)
g1.insert_vertex(apple)
g1.insert_vertex(knife)
g1.insert_vertex(cut)
g1.insert_vertex(chopped_apple)
g1.insert_vertex(salad_sauce)
g1.insert_vertex(bowl)
g1.insert_vertex(pick_and_place)
g1.insert_vertex(hand)
g1.insert_vertex(salad)
g2.insert_vertex(salad_sauce_container)
g2.insert_vertex(salad_sauce)
g2.insert_vertex(squeeze)
g2.insert_vertex(hand)
g1.insert_incident_edge(apple, cut)
g1.insert_incident_edge(knife, cut)
g1.insert_incident_edge(cut, chopped_apple)
g1.insert_incident_edge(chopped_apple, pick_and_place)
g1.insert_incident_edge(salad_sauce, pick_and_place)
g1.insert_incident_edge(bowl, pick_and_place)
g1.insert_incident_edge(pick_and_place, salad)
g1.insert_incident_edge(hand, pick_and_place)
g1.recipe.add(salad)
g2.insert_incident_edge(hand, squeeze)
g2.insert_incident_edge(salad_sauce_container, squeeze)
g2.insert_incident_edge(squeeze, salad_sauce)
g2.recipe.add(salad_sauce)
g1.display_processes()
g2.display_processes()
g3 = merge_graph(g1, g2)
g3.title = "Apple Salad"
g3.display_processes()
save_file = 'E:\\Research\\graph.txt'
save_KB(g3, save_file)
g4 = load_KB(save_file)
# g4.display_processes()
print(g4)
G = Graph("Apple")
count = 0
# while (1):
# option = input("请输入所要执行的操作的编号\n0:建立新知识图谱 1:输入图像信息 2:输入视频信息 3:输入语音信息")
#
# if option == '1':
# capture = cv2.VideoCapture(1)
# ret, frame = capture.read()
# img_path = 'E:\\Research\\' + str(count) + '.jpg'
# cv2.imwrite(img_path, frame)
# cv2.imshow('img', frame)
# img = image.load_img(img_path, target_size=(224, 224))
# x = image.img_to_array(img)
# x = np.expand_dims(x, axis=0)
# x = resnet50.preprocess_input(x)
#
# preds = model.predict(x)
# result = resnet50.decode_predictions(preds, top=1)[0][0][1]
#
# v = Vertex(1, result, ['Unchopped'], None, 'Fruit', img_path)
# print(v)
# G.insert_vertex(v)