-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnet_util.py
159 lines (132 loc) · 5.77 KB
/
net_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
'''
MIT License
Copyright (c) 2019 Shunsuke Saito, Zeng Huang, and Ryota Natsume
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
import torch
from torch.nn import init
import torch.nn as nn
import torch.nn.functional as F
import functools
def load_state_dict(state_dict, net):
model_dict = net.state_dict()
pretrained_dict = {k: v for k, v in state_dict.items() if k in model_dict}
for k, v in pretrained_dict.items():
if v.size() == model_dict[k].size():
model_dict[k] = v
not_initialized = set()
for k, v in model_dict.items():
if k not in pretrained_dict or v.size() != pretrained_dict[k].size():
not_initialized.add(k.split('.')[0])
print('not initialized', sorted(not_initialized))
net.load_state_dict(model_dict)
return net
def conv3x3(in_planes, out_planes, strd=1, padding=1, bias=False):
return nn.Conv2d(in_planes, out_planes, kernel_size=3,
stride=strd, padding=padding, bias=bias)
def init_weights(net, init_type='normal', init_gain=0.02):
def init_func(m): # define the initialization function
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, init_gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=init_gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=init_gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find(
'BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, init_gain)
init.constant_(m.bias.data, 0.0)
print('initialize network with %s' % init_type)
net.apply(init_func)
def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[]):
if len(gpu_ids) > 0:
assert (torch.cuda.is_available())
net.to(gpu_ids[0])
net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs
init_weights(net, init_type, init_gain=init_gain)
return net
class CustomBCELoss(nn.Module):
def __init__(self, brock=False, gamma=None):
super(CustomBCELoss, self).__init__()
self.brock = brock
self.gamma = gamma
def forward(self, pred, gt, gamma, w=None):
x_hat = torch.clamp(pred, 1e-5, 1.0-1e-5) # prevent log(0) from happening
gamma = gamma[:,None,None] if self.gamma is None else self.gamma
if self.brock:
x = 3.0*gt - 1.0 # rescaled to [-1,2]
loss = -(gamma*x*torch.log(x_hat) + (1.0-gamma)*(1.0-x)*torch.log(1.0-x_hat))
else:
loss = -(gamma*gt*torch.log(x_hat) + (1.0-gamma)*(1.0-gt)*torch.log(1.0-x_hat))
if w is not None:
if len(w.size()) == 1:
w = w[:,None,None]
return (loss * w).mean()
else:
return loss.mean()
class CustomMSELoss(nn.Module):
def __init__(self, gamma=None):
super(CustomMSELoss, self).__init__()
self.gamma = gamma
def forward(self, pred, gt, gamma, w=None):
gamma = gamma[:,None,None] if self.gamma is None else self.gamma
weight = gamma * gt + (1.0-gamma) * (1 - gt)
loss = (weight * (pred - gt).pow(2)).mean()
if w is not None:
return (loss * w).mean()
else:
return loss.mean()
def createMLP(dims, norm='bn', activation='relu', last_op=nn.Tanh(), dropout=False):
act = None
if activation == 'relu':
act = nn.ReLU()
if activation == 'lrelu':
act = nn.LeakyReLU()
if activation == 'selu':
act = nn.SELU()
if activation == 'elu':
act = nn.ELU()
if activation == 'prelu':
act = nn.PReLU()
mlp = []
for i in range(1,len(dims)):
if norm == 'bn':
mlp += [ nn.Linear(dims[i-1], dims[i]),
nn.BatchNorm1d(dims[i])]
if norm == 'in':
mlp += [ nn.Linear(dims[i-1], dims[i]),
nn.InstanceNorm1d(dims[i])]
if norm == 'wn':
mlp += [ nn.utils.weight_norm(nn.Linear(dims[i-1], dims[i]), name='weight')]
if norm == 'none':
mlp += [ nn.Linear(dims[i-1], dims[i])]
if i != len(dims)-1:
if act is not None:
mlp += [act]
if dropout:
mlp += [nn.Dropout(0.2)]
if last_op is not None:
mlp += [last_op]
return mlp