forked from castorini/anserini
-
Notifications
You must be signed in to change notification settings - Fork 0
/
msmarco-v1-passage.wp-tok.template
51 lines (32 loc) · 1.95 KB
/
msmarco-v1-passage.wp-tok.template
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Anserini Regressions: MS MARCO Passage Ranking
**Models**: bag-of-words approaches with WordPiece tokenization
This page documents regression experiments on the [MS MARCO passage ranking task](https://github.com/microsoft/MSMARCO-Passage-Ranking), which is integrated into Anserini's regression testing framework.
Here we are using **WordPiece tokenization** (i.e., from BERT).
In general, effectiveness is lower than with "standard" Lucene tokenization for two reasons: (1) we're losing stemming, and (2) some terms are chopped into less meaningful subwords.
The exact configurations for these regressions are stored in [this YAML file](${yaml}).
Note that this page is automatically generated from [this template](${template}) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead.
From one of our Waterloo servers (e.g., `orca`), the following command will perform the complete regression, end to end:
```
python src/main/python/run_regression.py --index --verify --search --regression ${test_name}
```
## Indexing
Typical indexing command:
```
${index_cmds}
```
The directory `/path/to/msmarco-passage-wp/` should be a directory containing the corpus in Anserini's jsonl format.
For additional details, see explanation of [common indexing options](${root_path}/docs/common-indexing-options.md).
## Retrieval
Topics and qrels are stored [here](https://github.com/castorini/anserini-tools/tree/master/topics-and-qrels), which is linked to the Anserini repo as a submodule.
The regression experiments here evaluate on the 6980 dev set questions; see [this page](${root_path}/docs/experiments-msmarco-passage.md) for more details.
After indexing has completed, you should be able to perform retrieval as follows:
```
${ranking_cmds}
```
Evaluation can be performed using `trec_eval`:
```
${eval_cmds}
```
## Effectiveness
With the above commands, you should be able to reproduce the following results:
${effectiveness}