Models: BM25
This page documents QA regression experiments on the wikipedia-dpr-100w
corpus, which is integrated into Anserini's regression testing framework.
The exact configurations for these regressions are stored in this YAML file. Note that this page is automatically generated from this template as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead.
From one of our Waterloo servers (e.g., orca
), the following command will perform the complete regression, end to end:
python src/main/python/run_regression.py --index --verify --search --regression wikipedia-dpr-100w-bm25
Typical indexing command:
bin/run.sh io.anserini.index.IndexCollection \
-collection JsonCollection \
-input /path/to/wikipedia-dpr-100w \
-generator DefaultLuceneDocumentGenerator \
-index indexes/lucene-index.wikipedia-dpr-100w/ \
-threads 43 -storeRaw \
>& logs/log.wikipedia-dpr-100w &
The directory /path/to/wikipedia-dpr-100w/
should be a directory containing the wikipedia-dpr-100w passages collection retrieved from here.
For additional details, see explanation of common indexing options.
Topics and qrels are stored here, which is linked to the Anserini repo as a submodule. The regression experiments here evaluate on the test sets of Natural Questions, TriviaQA, SQuAD, and WebQuestions.
After indexing has completed, you should be able to perform retrieval as follows:
bin/run.sh io.anserini.search.SearchCollection \
-index indexes/lucene-index.wikipedia-dpr-100w/ \
-topics tools/topics-and-qrels/topics.dpr.nq.test.txt \
-topicReader DprNq \
-output runs/run.wikipedia-dpr-100w.bm25.topics.dpr.nq.test.txt \
-bm25 &
bin/run.sh io.anserini.search.SearchCollection \
-index indexes/lucene-index.wikipedia-dpr-100w/ \
-topics tools/topics-and-qrels/topics.dpr.trivia.test.txt \
-topicReader DprNq \
-output runs/run.wikipedia-dpr-100w.bm25.topics.dpr.trivia.test.txt \
-bm25 &
bin/run.sh io.anserini.search.SearchCollection \
-index indexes/lucene-index.wikipedia-dpr-100w/ \
-topics tools/topics-and-qrels/topics.dpr.squad.test.txt \
-topicReader DprJsonl \
-output runs/run.wikipedia-dpr-100w.bm25.topics.dpr.squad.test.txt \
-bm25 &
bin/run.sh io.anserini.search.SearchCollection \
-index indexes/lucene-index.wikipedia-dpr-100w/ \
-topics tools/topics-and-qrels/topics.dpr.wq.test.txt \
-topicReader DprJsonl \
-output runs/run.wikipedia-dpr-100w.bm25.topics.dpr.wq.test.txt \
-bm25 &
bin/run.sh io.anserini.search.SearchCollection \
-index indexes/lucene-index.wikipedia-dpr-100w/ \
-topics tools/topics-and-qrels/topics.dpr.curated.test.txt \
-topicReader DprJsonl \
-output runs/run.wikipedia-dpr-100w.bm25.topics.dpr.curated.test.txt \
-bm25 &
bin/run.sh io.anserini.search.SearchCollection \
-index indexes/lucene-index.wikipedia-dpr-100w/ \
-topics tools/topics-and-qrels/topics.nq.test.txt \
-topicReader DprNq \
-output runs/run.wikipedia-dpr-100w.bm25.topics.nq.test.txt \
-bm25 &
The trec format will need to be converted to DPR's JSON format for evaluation:
python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run \
--index indexes/lucene-index.wikipedia-dpr-100w/ \
--topics dpr-nq-test \
--input runs/run.wikipedia-dpr-100w.bm25.topics.dpr.nq.test.txt \
--output runs/run.wikipedia-dpr-100w.bm25.topics.dpr.nq.test.txt.json \
&
python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run \
--index indexes/lucene-index.wikipedia-dpr-100w/ \
--topics dpr-trivia-test \
--input runs/run.wikipedia-dpr-100w.bm25.topics.dpr.trivia.test.txt \
--output runs/run.wikipedia-dpr-100w.bm25.topics.dpr.trivia.test.txt.json \
&
python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run \
--index indexes/lucene-index.wikipedia-dpr-100w/ \
--topics dpr-squad-test \
--input runs/run.wikipedia-dpr-100w.bm25.topics.dpr.squad.test.txt \
--output runs/run.wikipedia-dpr-100w.bm25.topics.dpr.squad.test.txt.json \
&
python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run \
--index indexes/lucene-index.wikipedia-dpr-100w/ \
--topics dpr-wq-test \
--input runs/run.wikipedia-dpr-100w.bm25.topics.dpr.wq.test.txt \
--output runs/run.wikipedia-dpr-100w.bm25.topics.dpr.wq.test.txt.json \
&
python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run \
--index indexes/lucene-index.wikipedia-dpr-100w/ \
--topics dpr-curated-test \
--input runs/run.wikipedia-dpr-100w.bm25.topics.dpr.curated.test.txt \
--output runs/run.wikipedia-dpr-100w.bm25.topics.dpr.curated.test.txt.json \
--regex &
python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run \
--index indexes/lucene-index.wikipedia-dpr-100w/ \
--topics nq-test \
--input runs/run.wikipedia-dpr-100w.bm25.topics.nq.test.txt \
--output runs/run.wikipedia-dpr-100w.bm25.topics.nq.test.txt.json \
&
Evaluation can be performed using scripts from pyserini:
python -m pyserini.eval.evaluate_dpr_retrieval --topk 20 --retrieval runs/run.wikipedia-dpr-100w.bm25.topics.dpr.nq.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 100 --retrieval runs/run.wikipedia-dpr-100w.bm25.topics.dpr.nq.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 20 --retrieval runs/run.wikipedia-dpr-100w.bm25.topics.dpr.trivia.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 100 --retrieval runs/run.wikipedia-dpr-100w.bm25.topics.dpr.trivia.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 20 --retrieval runs/run.wikipedia-dpr-100w.bm25.topics.dpr.squad.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 100 --retrieval runs/run.wikipedia-dpr-100w.bm25.topics.dpr.squad.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 20 --retrieval runs/run.wikipedia-dpr-100w.bm25.topics.dpr.wq.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 100 --retrieval runs/run.wikipedia-dpr-100w.bm25.topics.dpr.wq.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 20 --retrieval runs/run.wikipedia-dpr-100w.bm25.topics.dpr.curated.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 100 --retrieval runs/run.wikipedia-dpr-100w.bm25.topics.dpr.curated.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 20 --retrieval runs/run.wikipedia-dpr-100w.bm25.topics.nq.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 100 --retrieval runs/run.wikipedia-dpr-100w.bm25.topics.nq.test.txt.json
With the above commands, you should be able to reproduce the following results:
top_20_accuracy | BM25 (default parameters) |
---|---|
DPR: Natural Questions Test | 0.6294 |
DPR: TriviaQA Test | 0.7641 |
DPR: SQuAD Test | 0.7109 |
DPR: WebQuestions Test | 0.6240 |
DPR: CuratedTREC Test | 0.8069 |
EfficientQA: Natural Questions Test | 0.6399 |
top_100_accuracy | BM25 (default parameters) |
DPR: Natural Questions Test | 0.7825 |
DPR: TriviaQA Test | 0.8315 |
DPR: SQuAD Test | 0.8184 |
DPR: WebQuestions Test | 0.7549 |
DPR: CuratedTREC Test | 0.8991 |
EfficientQA: Natural Questions Test | 0.7922 |
Reproduction Log*
To add to this reproduction log, modify this template and run bin/build.sh
to rebuild the documentation.