Skip to content

Latest commit

 

History

History
159 lines (137 loc) · 9.02 KB

regressions-wikipedia-dpr-100w-bm25.md

File metadata and controls

159 lines (137 loc) · 9.02 KB

Anserini Regressions: QA on Wikipedia 100-word splits

Models: BM25

This page documents QA regression experiments on the wikipedia-dpr-100w corpus, which is integrated into Anserini's regression testing framework.

The exact configurations for these regressions are stored in this YAML file. Note that this page is automatically generated from this template as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead.

From one of our Waterloo servers (e.g., orca), the following command will perform the complete regression, end to end:

python src/main/python/run_regression.py --index --verify --search --regression wikipedia-dpr-100w-bm25

Indexing

Typical indexing command:

bin/run.sh io.anserini.index.IndexCollection \
  -collection JsonCollection \
  -input /path/to/wikipedia-dpr-100w \
  -generator DefaultLuceneDocumentGenerator \
  -index indexes/lucene-index.wikipedia-dpr-100w/ \
  -threads 43 -storeRaw \
  >& logs/log.wikipedia-dpr-100w &

The directory /path/to/wikipedia-dpr-100w/should be a directory containing the wikipedia-dpr-100w passages collection retrieved from here.

For additional details, see explanation of common indexing options.

Retrieval

Topics and qrels are stored here, which is linked to the Anserini repo as a submodule. The regression experiments here evaluate on the test sets of Natural Questions, TriviaQA, SQuAD, and WebQuestions.

After indexing has completed, you should be able to perform retrieval as follows:

bin/run.sh io.anserini.search.SearchCollection \
  -index indexes/lucene-index.wikipedia-dpr-100w/ \
  -topics tools/topics-and-qrels/topics.dpr.nq.test.txt \
  -topicReader DprNq \
  -output runs/run.wikipedia-dpr-100w.bm25.topics.dpr.nq.test.txt \
  -bm25 &
bin/run.sh io.anserini.search.SearchCollection \
  -index indexes/lucene-index.wikipedia-dpr-100w/ \
  -topics tools/topics-and-qrels/topics.dpr.trivia.test.txt \
  -topicReader DprNq \
  -output runs/run.wikipedia-dpr-100w.bm25.topics.dpr.trivia.test.txt \
  -bm25 &
bin/run.sh io.anserini.search.SearchCollection \
  -index indexes/lucene-index.wikipedia-dpr-100w/ \
  -topics tools/topics-and-qrels/topics.dpr.squad.test.txt \
  -topicReader DprJsonl \
  -output runs/run.wikipedia-dpr-100w.bm25.topics.dpr.squad.test.txt \
  -bm25 &
bin/run.sh io.anserini.search.SearchCollection \
  -index indexes/lucene-index.wikipedia-dpr-100w/ \
  -topics tools/topics-and-qrels/topics.dpr.wq.test.txt \
  -topicReader DprJsonl \
  -output runs/run.wikipedia-dpr-100w.bm25.topics.dpr.wq.test.txt \
  -bm25 &
bin/run.sh io.anserini.search.SearchCollection \
  -index indexes/lucene-index.wikipedia-dpr-100w/ \
  -topics tools/topics-and-qrels/topics.dpr.curated.test.txt \
  -topicReader DprJsonl \
  -output runs/run.wikipedia-dpr-100w.bm25.topics.dpr.curated.test.txt \
  -bm25 &
bin/run.sh io.anserini.search.SearchCollection \
  -index indexes/lucene-index.wikipedia-dpr-100w/ \
  -topics tools/topics-and-qrels/topics.nq.test.txt \
  -topicReader DprNq \
  -output runs/run.wikipedia-dpr-100w.bm25.topics.nq.test.txt \
  -bm25 &

The trec format will need to be converted to DPR's JSON format for evaluation:

python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run \
  --index indexes/lucene-index.wikipedia-dpr-100w/ \
  --topics dpr-nq-test \
  --input runs/run.wikipedia-dpr-100w.bm25.topics.dpr.nq.test.txt \
  --output runs/run.wikipedia-dpr-100w.bm25.topics.dpr.nq.test.txt.json \
 &
python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run \
  --index indexes/lucene-index.wikipedia-dpr-100w/ \
  --topics dpr-trivia-test \
  --input runs/run.wikipedia-dpr-100w.bm25.topics.dpr.trivia.test.txt \
  --output runs/run.wikipedia-dpr-100w.bm25.topics.dpr.trivia.test.txt.json \
 &
python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run \
  --index indexes/lucene-index.wikipedia-dpr-100w/ \
  --topics dpr-squad-test \
  --input runs/run.wikipedia-dpr-100w.bm25.topics.dpr.squad.test.txt \
  --output runs/run.wikipedia-dpr-100w.bm25.topics.dpr.squad.test.txt.json \
 &
python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run \
  --index indexes/lucene-index.wikipedia-dpr-100w/ \
  --topics dpr-wq-test \
  --input runs/run.wikipedia-dpr-100w.bm25.topics.dpr.wq.test.txt \
  --output runs/run.wikipedia-dpr-100w.bm25.topics.dpr.wq.test.txt.json \
 &
python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run \
  --index indexes/lucene-index.wikipedia-dpr-100w/ \
  --topics dpr-curated-test \
  --input runs/run.wikipedia-dpr-100w.bm25.topics.dpr.curated.test.txt \
  --output runs/run.wikipedia-dpr-100w.bm25.topics.dpr.curated.test.txt.json \
  --regex &
python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run \
  --index indexes/lucene-index.wikipedia-dpr-100w/ \
  --topics nq-test \
  --input runs/run.wikipedia-dpr-100w.bm25.topics.nq.test.txt \
  --output runs/run.wikipedia-dpr-100w.bm25.topics.nq.test.txt.json \
 &

Evaluation can be performed using scripts from pyserini:

python -m pyserini.eval.evaluate_dpr_retrieval --topk 20 --retrieval runs/run.wikipedia-dpr-100w.bm25.topics.dpr.nq.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 100 --retrieval runs/run.wikipedia-dpr-100w.bm25.topics.dpr.nq.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 20 --retrieval runs/run.wikipedia-dpr-100w.bm25.topics.dpr.trivia.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 100 --retrieval runs/run.wikipedia-dpr-100w.bm25.topics.dpr.trivia.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 20 --retrieval runs/run.wikipedia-dpr-100w.bm25.topics.dpr.squad.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 100 --retrieval runs/run.wikipedia-dpr-100w.bm25.topics.dpr.squad.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 20 --retrieval runs/run.wikipedia-dpr-100w.bm25.topics.dpr.wq.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 100 --retrieval runs/run.wikipedia-dpr-100w.bm25.topics.dpr.wq.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 20 --retrieval runs/run.wikipedia-dpr-100w.bm25.topics.dpr.curated.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 100 --retrieval runs/run.wikipedia-dpr-100w.bm25.topics.dpr.curated.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 20 --retrieval runs/run.wikipedia-dpr-100w.bm25.topics.nq.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 100 --retrieval runs/run.wikipedia-dpr-100w.bm25.topics.nq.test.txt.json

Effectiveness

With the above commands, you should be able to reproduce the following results:

top_20_accuracy BM25 (default parameters)
DPR: Natural Questions Test 0.6294
DPR: TriviaQA Test 0.7641
DPR: SQuAD Test 0.7109
DPR: WebQuestions Test 0.6240
DPR: CuratedTREC Test 0.8069
EfficientQA: Natural Questions Test 0.6399
top_100_accuracy BM25 (default parameters)
DPR: Natural Questions Test 0.7825
DPR: TriviaQA Test 0.8315
DPR: SQuAD Test 0.8184
DPR: WebQuestions Test 0.7549
DPR: CuratedTREC Test 0.8991
EfficientQA: Natural Questions Test 0.7922

Reproduction Log*

To add to this reproduction log, modify this template and run bin/build.sh to rebuild the documentation.