-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy path1800.MaximumAscendingSubarraySum.py
60 lines (51 loc) · 1.67 KB
/
1800.MaximumAscendingSubarraySum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
'''
Given an array of positive integers nums, return the
maximum possible sum of an ascending subarray in nums.
A subarray is defined as a contiguous sequence of numbers
in an array.
A subarray [numsl, numsl+1, ..., numsr-1, numsr] is
ascending if for all i where l <= i < r, numsi < numsi+1.
Note that a subarray of size 1 is ascending.
Example:
Input: nums = [10,20,30,5,10,50]
Output: 65
Explanation: [5,10,50] is the ascending subarray with
the maximum sum of 65.
Example:
Input: nums = [10,20,30,40,50]
Output: 150
Explanation: [10,20,30,40,50] is the ascending subarray
with the maximum sum of 150.
Example:
Input: nums = [12,17,15,13,10,11,12]
Output: 33
Explanation: [10,11,12] is the ascending subarray with
the maximum sum of 33.
Example:
Input: nums = [100,10,1]
Output: 100
Constraints:
- 1 <= nums.length <= 100
- 1 <= nums[i] <= 100
'''
#Difficulty: Easy
#104 / 104 test cases passed.
#Runtime: 36 ms
#Memory Usage: 14 MB
#Runtime: 36 ms, faster than 63.67% of Python3 online submissions for Maximum Ascending Subarray Sum.
#Memory Usage: 14 MB, less than 91.31% of Python3 online submissions for Maximum Ascending Subarray Sum.
class Solution:
def maxAscendingSum(self, nums: List[int]) -> int:
i = 0
j = i + 1
nums.append(0)
length = len(nums)
result = 0
while j < length:
if nums[j-1] < nums[j]:
j += 1
else:
result = max(result, sum(nums[i:j]))
i = j
j = i + 1
return result