-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy path110.BalancedBinaryTree.py
53 lines (43 loc) · 1.4 KB
/
110.BalancedBinaryTree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
'''
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is
defined as:
- a binary tree in which the left and right subtrees
of every node differ in height by no more than 1.
Example:
Input: root = [3,9,20,null,null,15,7]
Output: true
Example:
Input: root = [1,2,2,3,3,null,null,4,4]
Output: false
Example:
Input: root = []
Output: true
Constraints:
- The number of nodes in the tree is in the range
[0, 5000].
- -10^4 <= Node.val <= 10^4
'''
#Difficulty: Easy
#228 / 228 test cases passed.
#Runtime: 48 ms
#Memory Usage: 17.9 MB
#Runtime: 48 ms, faster than 80.20% of Python3 online submissions for Balanced Binary Tree.
#Memory Usage: 17.9 MB, less than 75.35% of Python3 online submissions for Balanced Binary Tree.
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isBalanced(self, root: TreeNode) -> bool:
return self.dfs(root) >= 0
def dfs(self, root):
if not root:
return 0
left = self.dfs(root.left)
right = self.dfs(root.right)
if left == -1 or right == -1 or abs(left - right) > 1:
return -1
return max(left, right) + 1