-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathbilinear_model.py
executable file
·82 lines (61 loc) · 2.65 KB
/
bilinear_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torch
import torchvision
import torch.optim as optim
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
# vgg16 = torchvision.models.vgg16(pretrained=True)
# import os
# os.environ["CUDA_VISIBLE_DEVICES"] = "2"
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
# nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2, padding=0),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1),
# nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2, padding=0),
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
# nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2, padding=0),
nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
# nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2, padding=0),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
# nn.MaxPool2d(kernel_size=2, stride=2, padding=0),
)
self.classifiers = nn.Sequential(
nn.Linear(512 ** 2, 200),
)
def forward(self, x):
x = self.features(x)
batch_size = x.size(0)
x = x.view(batch_size, 512, 28 ** 2)
x = (torch.bmm(x, torch.transpose(x, 1, 2)) / 28 ** 2).view(batch_size, -1)
x = torch.nn.functional.normalize(torch.sign(x) * torch.sqrt(torch.abs(x) + 1e-10))
# feature = feature.view(feature.size(0), -1)
x = self.classifiers(x)
return x