-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlayers.py
685 lines (540 loc) · 25.1 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
import math
class GraphConvolutionLayer(nn.Module):
"""
Base graph convolution layer.
"""
def __init__(self):
super(GraphConvolutionLayer, self).__init__()
pass
def forward(self, feat, adj):
"""
a overview of logic, can be override
:param adj:
:param feat:
:return:
"""
h_prime = self._aggregate(feat, adj)
return self._update(feat, h_prime)
def _aggregate(self, feat, adj):
print("Unimplemented!")
def _update(self, feat, feat_prime):
print("Unimplemented!")
class BaseGraphAttentionLayer(GraphConvolutionLayer):
def __init__(self):
super(BaseGraphAttentionLayer, self).__init__()
pass
def _attention(self, feat, adj):
print("Unimplemented!")
def _aggregate(self, feat, adj):
"""
a overview of logic, can be override.
:param adj:
:param feat:
:return:
"""
weight = self._attention(feat, adj)
h_prime = torch.matmul(weight, feat)
return h_prime
class GraphAttentionLayer(BaseGraphAttentionLayer):
"""
Simple GAT layer, similar to https://arxiv.org/abs/1710.10903
"""
def __init__(self, in_features, out_features, dropout, alpha, activation, residual_connection = False, num_basis= True):
super(GraphAttentionLayer, self).__init__()
self.dropout = dropout
self.in_features = in_features
self.out_features = out_features
self.alpha = alpha
self.W = nn.Parameter(torch.zeros(size=(in_features, out_features), dtype= torch.float))
nn.init.xavier_uniform_(self.W.data, gain=1.414)
self.a_1 = nn.Parameter(torch.zeros(size=(out_features, 1), dtype= torch.float))
nn.init.xavier_uniform_(self.a_1.data, gain=1) # how to choose a proper gain number
self.a_2 = nn.Parameter(torch.zeros(size=(out_features, 1), dtype= torch.float))
nn.init.xavier_uniform_(self.a_2.data, gain=1)
self.leakyrelu = nn.LeakyReLU(self.alpha)
self.activation= activation
def _attention(self, h, adj):
logit_1= torch.matmul(h, self.a_1)
logit_2= torch.matmul(h, self.a_2)
logits= logit_1 + logit_2.permute(0, 2, 1)
e= self.leakyrelu(logits)
zero_vec = -9e15* e.new_tensor([1., ])
attention = torch.where(adj > 0, e, zero_vec)
attention = F.softmax(attention, dim= -1)
return attention
def _aggregate(self, feat, adj):
h = torch.matmul(feat, self.W)
attention = self._attention(h, adj)
attention = F.dropout(attention, self.dropout, training=self.training)
h_out = torch.bmm(attention, h)
return h_out
def _update(self, feat, feat_prime):
if self.activation != None:
return self.activation(feat_prime)
else:
return feat_prime
return feat_prime
def forward(self, input, adj):
h_prime = self._aggregate(input, adj)
return self._update(input, h_prime)
def extra_repr(self):
return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')'
# TODO: change to batch training
class GraphDiffusedAttentionLayer(nn.Module):
"""
Simple GAT layer, similar to https://arxiv.org/abs/1710.10903
"""
def __init__(self, in_features, out_features, dropout, alpha):
super(GraphDiffusedAttentionLayer, self).__init__()
self.dropout = dropout
self.in_features = in_features
self.out_features = out_features
self.alpha = alpha
self.W = nn.Parameter(torch.zeros(size=(in_features, out_features), dtype= torch.float))
nn.init.xavier_uniform_(self.W.data, gain=1.414)
self.a_1 = nn.Parameter(torch.zeros(size=(out_features, 1), dtype= torch.float))
nn.init.xavier_uniform_(self.a_1.data, gain=1.414)
self.a_2 = nn.Parameter(torch.zeros(size=(out_features, 1), dtype= torch.float))
nn.init.xavier_uniform_(self.a_2.data, gain=1.414)
self.leakyrelu = nn.LeakyReLU(self.alpha)
def forward(self, input, adj):
h = torch.matmul(input, self.W)
logit_1= torch.matmul(h, self.a_1)
logit_2= torch.matmul(h, self.a_2)
logits= logit_1 + logit_2.permute(1, 0)
e= self.leakyrelu(logits)
zero_vec = -9e15* e.new_tensor([1., ])
e = torch.where(adj > 0, e, zero_vec)
mean_h = torch.mean(h, dim= 0, keepdim= True)
h_all= torch.cat([h, mean_h], 0)
glob_logit_2= torch.mm(mean_h, self.a_2)
glob_logit= logit_1 + glob_logit_2
e_diffused= self.leakyrelu(glob_logit)
e_all= torch.cat([e, e_diffused], -1)
attention = F.softmax(e_all, dim= -1)
attention = F.dropout(attention, self.dropout, training=self.training)
h_out = torch.mm(attention, h_all)
return F.elu(h_out)
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')'
# TODO:
class Order1GraphMLPAttentionLayer(nn.Module):
"""
Improved GAT layer, similar to https://arxiv.org/abs/1710.10903
"""
def __init__(self, in_features, out_features, dropout, alpha, activation, num_basis = 5):
super(Order1GraphMLPAttentionLayer, self).__init__()
self.dropout = dropout
self.in_features = in_features
self.out_features = out_features
self.alpha = alpha
self.W_1= nn.Parameter(torch.zeros(size=(in_features, out_features), ))
nn.init.xavier_uniform_(self.W_1.data, gain=1.414)
self.W_2 = nn.Parameter(torch.zeros(size=(in_features, out_features), ))
nn.init.xavier_uniform_(self.W_2.data, gain=1.414)
self.attention_layer = BiInteractionLayer()
self.leakyrelu = nn.LeakyReLU(self.alpha)
self.activation= activation
def _attention(self, feat, adj):
h = torch.matmul(feat, self.W)
Ax = torch.matmul(h, self.a_1)
Ay = torch.matmul(h, self.a_2)
A_xy_1= torch.matmul(h, self.a_12)
A_xy= torch.matmul(A_xy_1, h.permute(0, 2, 1))
# Ax_prime= torch.matmul(nd_flags, Ax.permute(0, 2, 1))
# nd_flags_T= nd_flags.permute(0, 2, 1)
# Ay_prime= torch.matmul(Ay, nd_flags_T)
Ax_prime= Ax.permute(0, 2, 1)
Ay_prime= Ay
logits = Ax_prime + Ay_prime + A_xy
e = self.leakyrelu(logits)
zero_vec = -9e15 * e.new_tensor([1., ])
e = torch.where(adj > 0, e, zero_vec)
attention = F.softmax(e, dim=-1)
# attention= torch.where(adj > 0, attention, attention.new_tensor([0., ]))
attention = F.dropout(attention, self.dropout, training=self.training)
return attention
def _aggregate(self, feat, adj):
attention = self._attention(feat, adj)
h_prime = torch.matmul(attention, feat)
return h_prime
def _update(self, feat, feat_agg):
h_1 = torch.matmul(feat, self.W_1)
h_2 = torch.matmul(feat_agg, self.W_2)
h_out = h_1 + h_2
if not self.activation:
return h_out
else:
return self.activation(h_out)
def forward(self, feat, adj):
feat_agg = self._aggregate(feat, adj)
return self._update(feat, feat_agg)
def extra_repr(self):
return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')'
class Order1GraphAttentionLayer(nn.Module):
"""
Improved GAT layer, similar to https://arxiv.org/abs/1710.10903
"""
def __init__(self, in_features, out_features, dropout, alpha, activation, num_basis = 5):
super(Order1GraphAttentionLayer, self).__init__()
self.dropout = dropout
self.in_features = in_features
self.out_features = out_features
self.alpha = alpha
self.W= nn.Parameter(torch.zeros(size=(in_features, out_features), ))
nn.init.xavier_uniform_(self.W.data, gain=1.414)
self.W_1= nn.Parameter(torch.zeros(size=(in_features, out_features), ))
nn.init.xavier_uniform_(self.W_1.data, gain=1.414)
self.W_2 = nn.Parameter(torch.zeros(size=(in_features, out_features), ))
nn.init.xavier_uniform_(self.W_2.data, gain=1.414)
self.a_1 = nn.Parameter(torch.zeros(size=(out_features, 1), dtype=torch.float))
nn.init.xavier_uniform_(self.a_1.data, gain=1.414)
self.a_2 = nn.Parameter(torch.zeros(size=(out_features, 1), dtype=torch.float))
nn.init.xavier_uniform_(self.a_2.data, gain=1.414)
self.a_12 = nn.Parameter(torch.zeros(size=(out_features, out_features)))
bound = 1 / math.sqrt(self.a_12.size(0))
nn.init.uniform_(self.a_12, -bound, bound)
# nn.init.xavier_uniform_(self.a_12.data, gain=1.414)
self.W_xy= nn.Parameter(torch.zeros(size= (out_features, 1)))
nn.init.xavier_uniform_(self.W_xy.data, gain= 1.414)
self.leakyrelu = nn.LeakyReLU(self.alpha)
self.activation= activation
def _attention(self, feat, adj):
h = torch.matmul(feat, self.W)
Ax = torch.matmul(h, self.a_1)
Ay = torch.matmul(h, self.a_2)
# A_xy_1= torch.matmul(h, self.a_12)
# A_xy= torch.matmul(A_xy_1, h.permute(0, 2, 1))
Ax_prime= Ax.permute(0, 2, 1)
Ay_prime= Ay
logits = Ax_prime + Ay_prime
# logits = Ax_prime + Ay_prime + A_xy
e = self.leakyrelu(logits)
zero_vec = -9e15 * e.new_tensor([1., ])
e = torch.where(adj > 0, e, zero_vec)
attention = F.softmax(e, dim=-1)
# attention= torch.where(adj > 0, attention, attention.new_tensor([0., ]))
attention = F.dropout(attention, self.dropout, training=self.training)
return attention
def _aggregate(self, feat, adj):
attention = self._attention(feat, adj)
h_prime = torch.matmul(attention, feat)
return h_prime
def _update(self, feat, feat_agg):
# h_1 = torch.matmul(feat, self.W_1)
h_2 = torch.matmul(feat_agg, self.W)
h_out = h_2
# h_out = h_1 + h_2
if not self.activation:
return h_out
else:
return self.activation(h_out)
def forward(self, feat, adj):
feat_agg = self._aggregate(feat, adj)
return self._update(feat, feat_agg)
def extra_repr(self):
return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')'
class SVDBilinear(nn.Module):
"""
my bilinear matmul but reducing parameter dimension using peusodu-SVD
"""
def __init__(self, num_basis, in1_features, in2_features, out_features):
super(SVDBilinear, self).__init__()
self.num_basis = num_basis
self.in1_features = in1_features
self.in2_features = in2_features
self.out_features = out_features
self.left_singular = nn.Parameter(torch.Tensor(out_features, in1_features, num_basis))
self.right_singular = nn.Parameter(torch.Tensor(out_features, num_basis, in2_features))
self.diag = nn.Parameter(torch.Tensor(out_features, 1, num_basis))
self.reset_parameter()
def reset_parameter(self):
init.xavier_uniform_(self.left_singular, gain = 1.414)
init.xavier_uniform_(self.right_singular, gain= 1.414)
init.normal_(self.diag, 0, 1/ math.sqrt(self.diag.size(-1)))
def forward(self, in1, in2):
us = self.left_singular * self.diag
usv = torch.matmul(us, self.right_singular)
return F.bilinear(in1, in2, weight= usv)
def __repr__(self):
return "SVDBilinear Layer: in1_features={}, in2_features={}, out_features={}, num_basis={}".format(
self.in1_features, self.in2_features, self.out_features, self.num_basis
)
class EmbedBilinear(nn.Module):
"""
binlinear module but reduce dimenion first to reduce complexity.
"""
def __init__(self, embed_size, in1_features, in2_features, out_features, bias = False):
super(EmbedBilinear, self).__init__()
self.embed_size = embed_size
self.in1_features = in1_features
self.in2_features = in2_features
self.out_features = out_features
self.use_bias = bias
self.left_embed_layer = nn.Linear(in_features= in1_features, out_features = embed_size, bias = bias)
self.right_embed_layer = nn.Linear(in_features= in2_features, out_features = embed_size, bias = bias)
self.Bilinear = nn.Bilinear(in1_features= embed_size, in2_features = embed_size, out_features = out_features, bias= bias)
self.reset_parameters()
def reset_parameters(self):
self.left_embed_layer.reset_parameters()
self.right_embed_layer.reset_parameters()
self.Bilinear.reset_parameters()
def forward(self, in1, in2):
embed1 = self.left_embed_layer(in1)
embed2 = self.right_embed_layer(in2)
return self.Bilinear(embed1, embed2)
def __repr__(self):
return "EmbedBilinear Layer: in1_features={}, in2_features={}, out_features={}, embed_size={}".format(
self.in1_features, self.in2_features, self.out_features, self.embed_size
)
class BiInteractionLayer(nn.Module):
def __init__(self, in1_features, in2_features, out_features, embed_size, intermediate_size= None, activation = F.relu, use_bias = True):
"""
:param in1_features:
:param in2_features:
:param out_features:
:param embed_size: embed size specific embedding vector size of input features
:param intermediate: a list specify intermediate size in mlp
"""
super(BiInteractionLayer, self).__init__()
self.in1_features= in1_features
self.in2_features = in2_features
self.out_features = out_features
self.embed_size = embed_size
self.embed_layer_1 = nn.Linear(in1_features, embed_size, bias = True)
self.embed_layer_2 = nn.Linear(in2_features, embed_size, bias = True)
self.activation = activation
self.bias= use_bias
self.interaction = nn.ModuleList()
if not intermediate_size:
self.interaction.append(nn.Linear(embed_size * 2, out_features, bias= True))
else:
self.interaction.append(nn.Linear(embed_size * 2, intermediate_size[0], bias= True))
for i in range(1, len(intermediate_size)):
self.interaction.append(nn.Linear(intermediate_size[i - 1], intermediate_size[i], bias= True))
self.interaction.append(nn.Linear(intermediate_size[-1], out_features, bias= True))
self.num_layers= len(self.interaction)
self.reset_parameters()
def reset_parameters(self):
self.embed_layer_1.reset_parameters()
self.embed_layer_2.reset_parameters()
for layer in self.interaction:
layer.reset_parameters()
def forward(self, in1, in2):
embed1 = self.activation(self.embed_layer_1(in1))
embed2 = self.activation(self.embed_layer_2(in2))
embed_concat = torch.cat([embed1, embed2], -1)
for layer in self.interaction:
embed_concat = self.activation(layer(embed_concat))
return embed_concat
def extra_repr(self):
return "Multi-layer perception: in1_features: %s, in2_features: %s, out_features: %s, bias: %s, layers: %s, activation: %s" \
%(self.in1_features, self.in2_features, self.out_features, self.bias, self.num_layers, self.activation)
class MLPGraphAttentionLayer(BaseGraphAttentionLayer):
"""
Improved GAT layer, similar to https://arxiv.org/abs/1710.10903
"""
def __init__(self, in_features, out_features, dropout, alpha, activation, num_basis = 5):
super(MLPGraphAttentionLayer, self).__init__()
self.dropout = dropout
self.in_features = in_features
self.out_features = out_features
self.alpha = alpha
self.num_basis = num_basis
self.W= nn.Parameter(torch.zeros(size=(in_features, out_features), ))
nn.init.xavier_uniform_(self.W.data, gain=1.414)
self.W_1= nn.Parameter(torch.zeros(size=(in_features, out_features), ))
nn.init.xavier_uniform_(self.W_1.data, gain=1.414)
self.W_2 = nn.Parameter(torch.zeros(size=(in_features, out_features), ))
nn.init.xavier_uniform_(self.W_2.data, gain=1.414)
self.a_1 = nn.Parameter(torch.zeros(size=(out_features, 1), dtype=torch.float))
nn.init.xavier_uniform_(self.a_1.data, gain=1.414)
self.a_2 = nn.Parameter(torch.zeros(size=(out_features, 1), dtype=torch.float))
nn.init.xavier_uniform_(self.a_2.data, gain=1.414)
self.a_12 = nn.Parameter(torch.zeros(size=(out_features, out_features)))
nn.init.xavier_uniform_(self.a_12.data, gain=1.414)
self.W_xy= nn.Parameter(torch.zeros(size= (out_features, 1)))
nn.init.xavier_uniform_(self.W_xy.data, gain= 1.414)
self.leakyrelu = nn.LeakyReLU(self.alpha)
self.biInteraction= BiInteractionLayer(in1_features= in_features, in2_features= in_features, out_features= out_features,
embed_size= int(math.sqrt(in_features)), intermediate_size= [out_features, ],
activation= self.leakyrelu)
self.activation= activation
def _attention(self, feat, adj):
h = torch.matmul(feat, self.W)
Ax = torch.matmul(h, self.a_1)
Ay = torch.matmul(h, self.a_2)
A_xy_1= torch.matmul(h, self.a_12)
A_xy= torch.matmul(A_xy_1, h.permute(0, 2, 1))
# A_xy = torch.chain_matmul(h, self.a_12, h.permute(1, 0))
# Ax_prime= torch.matmul(nd_flags, Ax.permute(0, 2, 1))
# nd_flags_T= nd_flags.permute(0, 2, 1)
# Ay_prime= torch.matmul(Ay, nd_flags_T)
Ax_prime= Ax.permute(0, 2, 1)
Ay_prime= Ay
logits = Ax_prime + Ay_prime + A_xy
e = self.leakyrelu(logits)
zero_vec = -9e15 * e.new_tensor([1., ])
e = torch.where(adj > 0, e, zero_vec)
attention = F.softmax(e, dim=-1)
# attention= torch.where(adj > 0, attention, attention.new_tensor([0., ]))
attention = F.dropout(attention, self.dropout, training=self.training)
return attention
def _aggregate(self, feat, adj):
attention = self._attention(feat, adj)
h_prime = torch.matmul(attention, feat)
return h_prime
def _update(self, feat, feat_prime):
h_out = self.biInteraction(feat, feat_prime)
return h_out
def forward(self, feat, adj):
feat_prime = self._aggregate(feat, adj)
h_out = self._update(feat, feat_prime)
if not self.activation:
return h_out
else:
return self.activation(h_out)
def extra_repr(self):
return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')'
class Order2GraphAttentionLayer(nn.Module):
"""
Improved GAT layer, similar to https://arxiv.org/abs/1710.10903
"""
def __init__(self, in_features, out_features, dropout, alpha, activation, num_basis = 5):
super(Order2GraphAttentionLayer, self).__init__()
self.dropout = dropout
self.in_features = in_features
self.out_features = out_features
self.alpha = alpha
self.num_basis = num_basis
self.W= nn.Parameter(torch.zeros(size=(in_features, out_features), ))
nn.init.xavier_uniform_(self.W.data, gain=1.414)
self.W_1= nn.Parameter(torch.zeros(size=(in_features, out_features), ))
nn.init.xavier_uniform_(self.W_1.data, gain=1.414)
self.W_2 = nn.Parameter(torch.zeros(size=(in_features, out_features), ))
nn.init.xavier_uniform_(self.W_2.data, gain=1.414)
self.a_1 = nn.Parameter(torch.zeros(size=(out_features, 1), dtype=torch.float))
nn.init.xavier_uniform_(self.a_1.data, gain=1.414)
self.a_2 = nn.Parameter(torch.zeros(size=(out_features, 1), dtype=torch.float))
nn.init.xavier_uniform_(self.a_2.data, gain=1.414)
self.a_12 = nn.Parameter(torch.zeros(size=(out_features, out_features)))
nn.init.xavier_uniform_(self.a_12.data, gain=1.414)
self.W_xy= nn.Parameter(torch.zeros(size= (out_features, 1)))
nn.init.xavier_uniform_(self.W_xy.data, gain= 1.414)
self.leakyrelu = nn.LeakyReLU(self.alpha)
self.bilinear= EmbedBilinear(num_basis, in1_features= in_features, in2_features= in_features, out_features= out_features)
self.activation= activation
def _attention(self, feat, adj):
h = torch.matmul(feat, self.W)
Ax = torch.matmul(h, self.a_1)
Ay = torch.matmul(h, self.a_2)
A_xy_1= torch.matmul(h, self.a_12)
A_xy= torch.matmul(A_xy_1, h.permute(0, 2, 1))
# A_xy = torch.chain_matmul(h, self.a_12, h.permute(1, 0))
# Ax_prime= torch.matmul(nd_flags, Ax.permute(0, 2, 1))
# nd_flags_T= nd_flags.permute(0, 2, 1)
# Ay_prime= torch.matmul(Ay, nd_flags_T)
Ax_prime= Ax.permute(0, 2, 1)
Ay_prime= Ay
logits = Ax_prime + Ay_prime + A_xy
e = self.leakyrelu(logits)
zero_vec = -9e15 * e.new_tensor([1., ])
e = torch.where(adj > 0, e, zero_vec)
attention = F.softmax(e, dim=-1)
# attention= torch.where(adj > 0, attention, attention.new_tensor([0., ]))
attention = F.dropout(attention, self.dropout, training=self.training)
return attention
def _aggregate(self, feat, adj):
attention = self._attention(feat, adj)
h_prime = torch.matmul(attention, feat)
return h_prime
def _update(self, feat, feat_agg):
h_1= torch.matmul(feat, self.W_1)
h_2= torch.matmul(feat_agg, self.W_2)
h_12= self.bilinear(feat, feat_agg)
h_out= h_1 + h_2 + h_12
if not self.activation:
return h_out
else:
return self.activation(h_out)
return h_out
def forward(self, feat, adj):
feat_agg = self._aggregate(feat, adj)
return self._update(feat, feat_agg)
def extra_repr(self):
return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')'
class SpecialSpmmFunction(torch.autograd.Function):
"""Special function for only sparse region backpropataion layer."""
@staticmethod
def forward(ctx, indices, values, shape, b):
assert indices.requires_grad == False
a = torch.sparse_coo_tensor(indices, values, shape)
ctx.save_for_backward(a, b)
ctx.N = shape[0]
return torch.matmul(a, b)
@staticmethod
def backward(ctx, grad_output):
a, b = ctx.saved_tensors
grad_values = grad_b = None
if ctx.needs_input_grad[1]:
grad_a_dense = grad_output.matmul(b.t())
edge_idx = a._indices()[0, :] * ctx.N + a._indices()[1, :]
grad_values = grad_a_dense.view(-1)[edge_idx]
if ctx.needs_input_grad[3]:
grad_b = a.t().matmul(grad_output)
return None, grad_values, None, grad_b
class SpecialSpmm(nn.Module):
def forward(self, indices, values, shape, b):
return SpecialSpmmFunction.apply(indices, values, shape, b)
class SpGraphAttentionLayer(nn.Module):
"""
Sparse version GAT layer, similar to https://arxiv.org/abs/1710.10903
"""
def __init__(self, in_features, out_features, dropout, alpha, concat=True):
super(SpGraphAttentionLayer, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.alpha = alpha
self.concat = concat
self.W = nn.Parameter(torch.zeros(size=(in_features, out_features)))
nn.init.xavier_normal_(self.W.data, gain=1.414)
self.a = nn.Parameter(torch.zeros(size=(1, 2*out_features)))
nn.init.xavier_normal_(self.a.data, gain=1.414)
self.dropout = nn.Dropout(dropout)
self.leakyrelu = nn.LeakyReLU(self.alpha)
self.special_spmm = SpecialSpmm()
def forward(self, input, adj):
N = input.size()[0]
edge = adj.nonzero().t()
h = torch.mm(input, self.W)
# h: N x out
assert not torch.isnan(h).any()
# Self-attention on the nodes - Shared attention mechanism
edge_h = torch.cat((h[edge[0, :], :], h[edge[1, :], :]), dim=1).t()
# edge: 2*D x E
edge_e = torch.exp(-self.leakyrelu(self.a.mm(edge_h).squeeze()))
assert not torch.isnan(edge_e).any()
# edge_e: E
e_rowsum = self.special_spmm(edge, edge_e, torch.Size([N, N]), torch.ones(size=(N,1)).cuda())
# e_rowsum: N x 1
edge_e = self.dropout(edge_e)
# edge_e: E
h_prime = self.special_spmm(edge, edge_e, torch.Size([N, N]), h)
assert not torch.isnan(h_prime).any()
# h_prime: N x out
h_prime = h_prime.div(e_rowsum)
# h_prime: N x out
assert not torch.isnan(h_prime).any()
if self.concat:
# if this layer is not last layer,
return F.elu(h_prime)
else:
# if this layer is last layer,
return h_prime
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')'