Skip to content

Latest commit

 

History

History
40 lines (27 loc) · 2.81 KB

convert.md

File metadata and controls

40 lines (27 loc) · 2.81 KB

数据格式转换

PaddleX支持图像分类、目标检测、实例分割和语义分割四大视觉领域常见的任务,对于每类视觉任务,都支持了特定的数据格式。PaddleX目前支持了图像分类的ImageNet格式,目标检测的PascalVOC格式,实例分割的MSCOCO格式(MSCOCO也可以用于目标检测)以及语义分割数据格式。

常见标注工具

图像分类无需标注工具,用户只需以txt文件记录每张图片的类别标签即可。对于目标检测、实例分割和语义分割,PaddleX已经与主流的标注工具进行了适配,用户可根据自己的需求,选择以下标注工具进行数据标注。

标注工具 图像分类 目标检测 实例分割 语义分割 安装
Labelme - pip install labelme (本地数据标注)
精灵标注 √* 官网下载 (本地数据标注)

数据标注完成后,参照如下流程,将标注数据转为可用PaddleX模型训练的数据组织格式。

*注意:精灵标注的目标检测数据可以在工具内部导出为PascalVOC格式,因此paddlex未提供精灵标注数据到PascalVOC格式的转换

标注数据格式转换

目前所有标注工具生成的标注文件,均为与原图同名的json格式文件,如1.jpg在标注完成后,则会在标注文件保存的目录中生成1.json文件。转换时参照以下步骤:

  1. 将所有的原图文件放在同一个目录下,如pics目录
  2. 将所有的标注json文件放在同一个目录下,如annotations目录
  3. 使用如下命令进行转换:
paddlex --data_conversion --source labelme --to PascalVOC --pics ./pics --annotations ./annotations --save_dir ./converted_dataset_dir
参数 说明
--source 表示数据标注来源,支持labelmejingling(分别表示数据来源于LabelMe,精灵标注助手)
--to 表示数据需要转换成为的格式,支持ImageNet(图像分类)、PascalVOC(目标检测),MSCOCO(实例分割,也可用于目标检测)和SEG(语义分割)
--pics 指定原图所在的目录路径
--annotations 指定标注文件所在的目录路径

注意

  1. 精灵标注的目标检测数据可以在工具内部导出为PascalVOC格式,因此paddlex未提供精灵标注数据到PascalVOC格式的转换
  2. 在将LabelMe数据集转换为COCO数据集时,LabelMe的图像文件名和json文件名需要一一对应,才可正确转换