-
Notifications
You must be signed in to change notification settings - Fork 5
/
MARcorrsmile.r
310 lines (244 loc) · 7.48 KB
/
MARcorrsmile.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# MARcorrsmile
#####-----vGaussianTranche-CDS Index Tranche 20071102
vGaussianTranche=function(rhoInput,MInput,dateInput){
#vGaussianTranche(.3,100,"2007-11-02")
#---define variables for using later
M=MInput # Monte Carlo
d=125 # # of entities
rho=rhoInput # correlation parameter in copula
U=matrix(NA,d,M)
norm.cop=list()
tao=matrix(NA,d,M)
# Settlement Date
CompDate=list()
CompDate=as.Date(dateInput) # Settlement Date
#lambda=lambdaInput
lambda=numeric()
lambdaVector=read.csv("C:/+++++CDODATA/usingDataSet/defIntensity.csv")
lambda=lambdaVector[which(as.Date(lambdaVector[,1])==as.Date(CompDate)),3]
diffTime=numeric()
timeTable=data.frame()
Time=numeric()
TT=numeric()
BETA=numeric()
payDay=read.csv("C:/+++++CDODATA/usingDataSet/payday.csv")[,1]
BETA=numeric()
# Flat Recovery Rate 40%
R=numeric()
R=0.4#recoveryInput
# Risk-free interest rate 5.0%
IntRate=numeric()
IntRate=0.03#intRateInput
################################################################################
#---check needed packages
is.installed=list()
is.installed <- function(mypkg) is.element(mypkg, installed.packages()[,1])
if(is.installed("copula")){library(copula)
}else{
install.packages("copula")
library(copula)}
if(is.installed("matrixcalc")){library(matrixcalc)
}else{
install.packages("matrixcalc")
library(matrixcalc)}
#---1) 2)Compute tao
norm.cop <- normalCopula(rho, dim = d, dispstr = "ex") #
#U <- rCopula(M, norm.cop) #
#U=t(rCopula(M, norm.cop))
tao=(-1/lambda)*log(t(rCopula(M, norm.cop)))
#---3) 4)Compute Time 求Time(term structure)
diffTime=as.numeric(as.Date(payDay)-as.Date(CompDate))
timeTable=data.frame(as.Date(payDay),diffTime)
if(timeTable[1,2]<0){timeTable=timeTable[-which(timeTable[,2]<0),]}else{timeTable=timeTable}
Time=timeTable[,1] # term structure
#Time=as.numeric(as.Date(pa)-as.Date(tStStart #
TT=length(timeTable[,1]) #
tPercent=numeric()
tPercent=cumsum(as.numeric(as.Date(c(CompDate,Time))[-1]-as.Date(c(CompDate,Time))[-length(c(CompDate,Time))])/365)
ONE=matrix(NA,125*M,TT)
#---6) Compute ONE matrix
taoVector=matrix(NA,125*M,1)
taoVector=vec(tao)
ONE=apply(taoVector,1,function(x)as.numeric(x<=tPercent))
ONE=t(ONE)
#---5) Compute BETA
BETA=exp(-IntRate*(tPercent))
#---6) L matrix
L=matrix(NA,M,TT)
for(i in 1:M){
for(j in 1:TT){
L[i,j]=sum(ONE[(i*125-124):(i*125),j])
}
}
L=((1-R)/d)*L
#---7) Lj matrix
l1=numeric()
u1=numeric()
l2=numeric()
u2=numeric()
l3=numeric()
u3=numeric()
l4=numeric()
u4=numeric()
l5=numeric()
u5=numeric()
l1=0
u1=0.03
l2=0.03
u2=0.06
l3=0.06
u3=0.09
l4=0.09
u4=0.12
l5=0.12
u5=0.22
fct=function(x){
L1=numeric()
L2=numeric()
L3=numeric()
L4=numeric()
L5=numeric()
L1=0.03*as.numeric(x>u1)+(x-l1)*as.numeric(x>l1 & x<=u1)+0*as.numeric(x<=l1)
L2=0.03*as.numeric(x>u2)+(x-l2)*as.numeric(x>l2 & x<=u2)+0*as.numeric(x<=l2)
L3=0.03*as.numeric(x>u3)+(x-l3)*as.numeric(x>l3 & x<=u3)+0*as.numeric(x<=l3)
L4=0.03*as.numeric(x>u4)+(x-l4)*as.numeric(x>l4 & x<=u4)+0*as.numeric(x<=l4)
L5=0.1*as.numeric(x>u5)+(x-l5)*as.numeric(x>l5 & x<=u5)+0*as.numeric(x<=l5)
return(c(L1,L2,L3,L4,L5))
}
LjResult=matrix(NA,5,M*TT)
LjResult=sapply(t(L),fct)
LjResult=t(LjResult)
#---8) LjResultMinus1
minusIndex=numeric()
LjResultTemp=matrix(NA,M*TT,5)
minusIndex=c(1:M)*TT
LjResultTemp=LjResult
LjResultTemp[minusIndex,]=0
LjResultMinus1=LjResultTemp
LjResultMinus1=LjResultMinus1[-length(LjResultMinus1[,1]),]
LjResultMinus1=rbind(seq(0,0,length.out=5),LjResultMinus1)
#---9) LjDiff
LjDiff=matrix(NA,M*TT,5)
LjDiff=LjResult-LjResultMinus1
#---10) BETAMatrix
betaMatrix=matrix(NA,M*TT,5)
betaMatrix=matrix(BETA,M*TT,5)
#---11) 12)upStar, upSumStar, eUpSumStar
upStar=matrix(NA,M*TT,5)
upSumStar=numeric()
eUpSumStar=numeric()
upStar=betaMatrix*LjDiff
upSumStar=colSums(upStar)
eUpSumStar=upSumStar*(1/M)
#---13) FjResult
FjResult=matrix(NA,M*TT,5)
FjResult=cbind((u1-l1)-LjResult[,1],(u2-l2)-LjResult[,2],(u3-l3)-LjResult[,3],(u4-l4)-LjResult[,4],(u5-l5)-LjResult[,5])
#---14) FjResultMinus1
FjResultMinus1=matrix(NA,M*TT,5)
FjResultTemp=matrix(NA,M*TT,5)
FjResultTemp=FjResult
FjResultTemp[minusIndex,]=0
FjResultMinus1=FjResultTemp[-length(FjResult[,1]),]
FjResultMinus1=rbind(seq(0,0,length.out=5),FjResultMinus1)
#---15) FjAdd
FjAdd=matrix(NA,M*TT,5)
FjAddHalf=matrix(NA,M*TT,5)
FjAdd=FjResult+FjResultMinus1
FjAddHalf=0.5*FjAdd
#---16) deltaMatrix
deltaT=numeric()
deltaT=as.numeric(as.Date(c(CompDate,Time))[-1]-as.Date(c(CompDate,Time))[-length(c(CompDate,Time))])/365
deltaMatrix=matrix(NA,M*TT,5)
deltaMatrix=matrix(deltaT,M*TT,5)
#---17) lowStar, lowSumStar, eLowSumStar
lowStar=matrix(NA,M*TT,5)
lowSumStar=numeric()
eLowSumStar=numeric()
lowStar=FjAddHalf*betaMatrix*deltaMatrix
lowSumStar= colSums(lowStar)
eLowSumStar=(1/M)*lowSumStar
#---18) tranches' spreads
trancheSpread1=(eUpSumStar[1]-0.05*eLowSumStar[1])/0.03
trancheSpread2=eUpSumStar[2]/eLowSumStar[2]
trancheSpread3=eUpSumStar[3]/eLowSumStar[3]
trancheSpread4=eUpSumStar[4]/eLowSumStar[4]
trancheSpread5=eUpSumStar[5]/eLowSumStar[5]
#---19) return value
return(c(trancheSpread1,trancheSpread2,trancheSpread3,trancheSpread4,trancheSpread5))
}#
#####----- Imply the correlation from market data
# Market data for 5 tranches spreads on 2007-11-02 from the Bloomberg Terminal
#20
#127.78
#58.15
#35.33
#24.205
rho=seq(0.01,.99,length.out=500)
#spread=vGaussianTranche(.3,100,"2007-11-02")
spread1=numeric()
for(i in 1:500){
spread1[i]=vGaussianTranche(rho[i],10000,"2007-11-02")[1]*100
}
result1=cbind(abs(spread1-20),rho)
result1[which(result1[,1]==min(result1[,1])),]
#########
rho=seq(0.001,.03,length.out=500)
#spread=vGaussianTranche(.3,100,"2007-11-02")
spread2=numeric()
for(i in 1:500){
spread2[i]=vGaussianTranche(rho[i],10000,"2007-11-02")[2]*10000
}
result2=cbind(abs(spread2-127.78),rho)
result2[which(result2[,1]==min(result2[,1])),]
#########
rho=seq(0.01,.99,length.out=500)
#spread=vGaussianTranche(.3,100,"2007-11-02")
spread3=numeric()
for(i in 1:500){
spread3[i]=vGaussianTranche(rho[i],10000,"2007-11-02")[3]*10000
}
result3=cbind(abs(spread3-58.15),rho)
result3[which(result3[,1]==min(result3[,1])),]
#########
rho=seq(0.01,.99,length.out=500)
#spread=vGaussianTranche(.3,100,"2007-11-02")
spread4=numeric()
for(i in 1:500){
spread4[i]=vGaussianTranche(rho[i],10000,"2007-11-02")[4]*10000
}
result4=cbind(abs(spread4-35.33),rho)
result4[which(result4[,1]==min(result4[,1])),]
#########
rho=seq(0.01,.99,length.out=500)
#spread=vGaussianTranche(.3,100,"2007-11-02")
spread5=numeric()
for(i in 1:500){
spread5[i]=vGaussianTranche(rho[i],10000,"2007-11-02")[5]*10000
}
result5=cbind(abs(spread5-24.205),rho)
result5[which(result5[,1]==min(result5[,1])),]
# Results the Gaussian copula
# 0.35761523
# 0.01721443
# 0.1101603
# 0.18478958
# 0.308517
#####----- Plot correlation smile
Correlation=c(0.35761523,0.01721443,0.1101603,0.18478958,0.308517)
Tranche=c(1:5)
dateC=c("1", "2", "3", "4","5")
#plot(Tranche,Correlation,type="b",col="blue")
plot(1:5,seq(0,.4,length.out=5), xlab=" ", ylab=" ",
type="b",pch=17, col="White",axes=FALSE, xaxt="n", yaxt="n", font=2,cex=2)
box()
axis(1,at=1:5, labels=FALSE)
axis(2,at=c(0.0, 0.1, 0.2, 0.3, 0.4))
mtext("Implied Compound Correlation", side=2, line=2.7, at= .2, font=2,cex=2)
mtext("Tranche", side=1, line=3.7, at=3, font=2,cex=2)
text(cex=1, x=1:5, y=-0.03, dateC, xpd=TRUE)
lines(Tranche,Correlation,type="b",col="blue", lwd=9,pch=17)
text(1.3, 0.35, labels = "Equity",cex=2)
text(2+.8, 0.03, labels = "Junior Mezzanine",cex=2)
text(3+.8, 0.1, labels = "Senior Mezzanine",cex=2)
text(4+.5, 0.17, labels = "Junior Senior",cex=2)
text(4.5, 0.35, labels = "Super Senior",cex=2)