-
Notifications
You must be signed in to change notification settings - Fork 5
/
MARcdomjj.r
222 lines (172 loc) · 5.55 KB
/
MARcdomjj.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#####-----
mjj=function(theta1Input,theta2Input,weightInput,M,dateInput){
#vMixedTrancheGsT=function(theta1Input,theta2Input,weightInput,M,dateInput)
#theta1Input=.15
#theta2Input=.08
#weightInput=.03
#MInput=100
#dateInput=c("2007/10/23")
#---define variables for using later
#M=MInput # Monte Carlo runsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
d=125 # # of entities
#rho=rhoInput # correlation parameter in copulaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
U=matrix(NA,M,d)
norm.cop=list()
tao=matrix(NA,d,M)
# Settlement Date
CompDate=list()
CompDate=as.Date(dateInput) # 设定计算日Settlement Dateeeeeeeeeeeeeeeeeeeeeeeeeeeee
#lambda=lambdaInput
lambda=numeric()
lambdaVector=read.csv("C:/defIntensity.csv")
lambda=lambdaVector[which(as.Date(lambdaVector[,1])==as.Date(CompDate)),3]
diffTime=numeric()
timeTable=data.frame()
Time=numeric()
TT=numeric()
BETA=numeric()
payDay=read.csv("C:/payday.csv")[,1]
BETA=numeric()
# Flat Recovery Rate 40% 设定损失回收率R
R=numeric()
R=0.4#recoveryInput
# Risk-free interest rate 5.0% 设定无风险回报率
IntRate=numeric()
IntRate=0.03#intRateInput
################################################################################
#---check needed packages 检查软件包是否安装
is.installed=list()
is.installed <- function(mypkg) is.element(mypkg, installed.packages()[,1])
if(is.installed("copula")){library(copula)
}else{
install.packages("copula")
library(copula)}
if(is.installed("matrixcalc")){library(matrixcalc)
}else{
install.packages("matrixcalc")
library(matrixcalc)}
#---1) 2)Compute tao 计算违约时间 copulaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
joe.cop1 <- joeCopula(iTau(joeCopula(), theta1Input), dim = d)
joe.cop2 <- joeCopula(iTau(joeCopula(), theta2Input), dim = d)
rN=ifelse((M*weightInput)<1,1,floor(M*weightInput))
U=t(rbind(rCopula(rN, joe.cop1),rCopula(M-rN, joe.cop2))[sample(M,M,replace=FALSE),])
tao=(-1/lambda)*log(U)
#---3) 4)Compute Time 求Time(term structure)
diffTime=as.numeric(as.Date(payDay)-as.Date(CompDate))
timeTable=data.frame(as.Date(payDay),diffTime)
if(timeTable[1,2]<0){timeTable=timeTable[-which(timeTable[,2]<0),]}else{timeTable=timeTable}
Time=timeTable[,1] # term structure 未来实际的payDay
TT=length(timeTable[,1]) #
tPercent=numeric()
tPercent=cumsum(as.numeric(as.Date(c(CompDate,Time))[-1]-as.Date(c(CompDate,Time))[-length(c(CompDate,Time))])/365)
ONE=matrix(NA,125*M,TT)
#---6) Compute ONE matrix 求ONE矩阵
taoVector=matrix(NA,125*M,1)
taoVector=vec(tao)
ONE=apply(taoVector,1,function(x)as.numeric(x<=tPercent))
ONE=t(ONE)
#---5) Compute BETA 求beta 折现因子
BETA=exp(-IntRate*(tPercent))
#---6) L matrix 求Lt矩阵
L=matrix(NA,M,TT)
for(i in 1:M){
for(j in 1:TT){
L[i,j]=sum(ONE[(i*125-124):(i*125),j])
}
}
L=((1-R)/d)*L
#---7) Lj matrix 求Lj矩阵
l1=numeric()
u1=numeric()
l2=numeric()
u2=numeric()
l3=numeric()
u3=numeric()
l4=numeric()
u4=numeric()
l5=numeric()
u5=numeric()
l1=0
u1=0.03
l2=0.03
u2=0.06
l3=0.06
u3=0.09
l4=0.09
u4=0.12
l5=0.12
u5=0.22
fct=function(x){
L1=numeric()
L2=numeric()
L3=numeric()
L4=numeric()
L5=numeric()
L1=0.03*as.numeric(x>u1)+(x-l1)*as.numeric(x>l1 & x<=u1)+0*as.numeric(x<=l1)
L2=0.03*as.numeric(x>u2)+(x-l2)*as.numeric(x>l2 & x<=u2)+0*as.numeric(x<=l2)
L3=0.03*as.numeric(x>u3)+(x-l3)*as.numeric(x>l3 & x<=u3)+0*as.numeric(x<=l3)
L4=0.03*as.numeric(x>u4)+(x-l4)*as.numeric(x>l4 & x<=u4)+0*as.numeric(x<=l4)
L5=0.1*as.numeric(x>u5)+(x-l5)*as.numeric(x>l5 & x<=u5)+0*as.numeric(x<=l5)
return(c(L1,L2,L3,L4,L5))
}
LjResult=matrix(NA,5,M*TT)
LjResult=sapply(t(L),fct)
LjResult=t(LjResult)
#---8) LjResultMinus1
minusIndex=numeric()
LjResultTemp=matrix(NA,M*TT,5)
minusIndex=c(1:M)*TT
LjResultTemp=LjResult
LjResultTemp[minusIndex,]=0
LjResultMinus1=LjResultTemp
LjResultMinus1=LjResultMinus1[-length(LjResultMinus1[,1]),]
LjResultMinus1=rbind(seq(0,0,length.out=5),LjResultMinus1)
#---9) LjDiff
LjDiff=matrix(NA,M*TT,5)
LjDiff=LjResult-LjResultMinus1
#---10) BETAMatrix
betaMatrix=matrix(NA,M*TT,5)
betaMatrix=matrix(BETA,M*TT,5)
#---11) 12)upStar, upSumStar, eUpSumStar
upStar=matrix(NA,M*TT,5)
upSumStar=numeric()
eUpSumStar=numeric()
upStar=betaMatrix*LjDiff
upSumStar=colSums(upStar)
eUpSumStar=upSumStar*(1/M)
#---13) FjResult
FjResult=matrix(NA,M*TT,5)
FjResult=cbind((u1-l1)-LjResult[,1],(u2-l2)-LjResult[,2],(u3-l3)-LjResult[,3],(u4-l4)-LjResult[,4],(u5-l5)-LjResult[,5])
#---14) FjResultMinus1
FjResultMinus1=matrix(NA,M*TT,5)
FjResultTemp=matrix(NA,M*TT,5)
FjResultTemp=FjResult
FjResultTemp[minusIndex,]=0
FjResultMinus1=FjResultTemp[-length(FjResult[,1]),]
FjResultMinus1=rbind(seq(0,0,length.out=5),FjResultMinus1)
#---15) FjAdd
FjAdd=matrix(NA,M*TT,5)
FjAddHalf=matrix(NA,M*TT,5)
FjAdd=FjResult+FjResultMinus1
FjAddHalf=0.5*FjAdd
#---16) deltaMatrix
deltaT=numeric()
deltaT=as.numeric(as.Date(c(CompDate,Time))[-1]-as.Date(c(CompDate,Time))[-length(c(CompDate,Time))])/365
deltaMatrix=matrix(NA,M*TT,5)
deltaMatrix=matrix(deltaT,M*TT,5)
#---17) lowStar, lowSumStar, eLowSumStar
lowStar=matrix(NA,M*TT,5)
lowSumStar=numeric()
eLowSumStar=numeric()
lowStar=FjAddHalf*betaMatrix*deltaMatrix
lowSumStar= colSums(lowStar)
eLowSumStar=(1/M)*lowSumStar
#---18) tranches' spreads
trancheSpread1=(eUpSumStar[1]-0.05*eLowSumStar[1])/0.03
trancheSpread2=eUpSumStar[2]/eLowSumStar[2]
trancheSpread3=eUpSumStar[3]/eLowSumStar[3]
trancheSpread4=eUpSumStar[4]/eLowSumStar[4]
trancheSpread5=eUpSumStar[5]/eLowSumStar[5]
#---19) return value
return(c(trancheSpread1,trancheSpread2,trancheSpread3,trancheSpread4,trancheSpread5))
}# 函数结束