-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsgd.py
137 lines (126 loc) · 3.03 KB
/
sgd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import sys
import random
import math
import numpy
def sign(vec_x, vec_y):
vec_product = 0
for index in range(0,len(vec_x)):
vec_product += vec_x[index] * vec_y[index]
if vec_product > 0 :
return 1
else:
return -1
def pla(train_data):
w = [0,0,0,0,0]
halt = False
while halt == False:
halt = True
for vec in train_data:
x = vec[0:len(vec)-1]
y = vec[len(vec)-1]
if sign(w,x) != y:
halt = False
for i in range(0,len(w)):
w[i] += x[i]*y
return w
def verify(w, train_data):
verification = 0
for vec in train_data:
x = vec[0:len(vec)-1]
y = vec[len(vec)-1]
if sign(w,x) == y:
verification += 1
return verification/len(train_data)
def pocket(train_data, updates=100):
w = [0,0,0,0,0]
w_verification = verify(w,train_data)
for i in range(0,50):
for vec in train_data:
x = vec[0:len(vec)-1]
y = vec[len(vec)-1]
if sign(w,x) != y:
w_new = w[:]
for i in range(0,len(w_new)):
w_new[i] += x[i]*y
w_new_verification = verify(w_new,train_data)
if w_new_verification > w_verification:
w = w_new
w_verification = w_new_verification
return w
def sgd(times, u_start=0,v_start=0,step=0.01):
u = u_start
v = v_start
while times != 0:
delta_u = round(math.exp(u) + v * math.exp(u*v)-2*v-3,3)
delta_v = round(2*math.exp(2*v) + u*math.exp(u*v)-2*u-2,3)
u -= round(step * delta_u,3)
v -= round(step * delta_v,3)
times -= 1
print u,v,math.exp(u)+math.exp(2*v)+math.exp(u*v)-u*u-2*u*v+2*v*v-3*u-2*v
print math.exp(u)+math.exp(2*v)+math.exp(u*v)-u*u-2*u*v+2*v*v-3*u-2*v
def logit(x):
return 1/(1+math.exp(x*-1))
def generateData():
data = list()
for i in range(1000):
x = random.uniform(-1,1)
y = random.uniform(-1,1)
if x*x+y*y-0.6 >= 0:
sign = 1
else:
sign = -1
if random.uniform(0,1) <= 0.1:
sign *= -1
data.append((x,y,sign))
return data
def product(x,y):
dot_product = 0
for i in range(len(x)):
dot_product += x[i]*y[i]
return dot_product
def sign_logistic(w,x):
if(logit((product(w,x))) > 0.5):
return 1
else:
return -1
def verify_logistic(w,m_data):
verification = 0
for vec in m_data:
x = vec[0:len(vec)-1]
y = vec[len(vec)-1]
if sign_logistic(w,x) == y:
verification += 1
return verification*1.0/len(m_data)
def logistic_regression(m_data,times=2000):
N = len(m_data)
w = [0]*21
gradient = [0]*21
for i in range(2000):
vec = m_data[i%N]
x = vec[0:-1]
y = vec[-1]
theta = logit(-1*y*product(w,x))
for index in range(len(x)):
gradient[index] = theta*(-1*y*x[index])
for index in range(len(w)):
w[index] = w[index] - 0.001*gradient[index]
return w
def main():
train_data = []
test_data = []
for line in open('train.dat','r'):
vec = line.split()
vec = [float(item) for item in vec]
vec[-1] = int(vec[-1])
vec = [1] + vec
train_data.append(vec)
for line in open('test.dat','r'):
vec = line.split()
vec = [float(item) for item in vec]
vec[-1] = int(vec[-1])
vec = [1] + vec
test_data.append(vec)
w=logistic_regression(train_data)
print 1-verify_logistic(w,test_data)
if __name__ == '__main__':
main()