forked from xurongzhong/mobile_data
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcount_unqualified_photo_num.py
50 lines (33 loc) · 1.21 KB
/
count_unqualified_photo_num.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# Author: xurongzhong#126.com wechat:pythontesting qq:37391319
# CreateDate: 2018-2-25
# count_unqualified_photo_num.py
'''
第一行的奇数格表示人名
1,2列为人员vivo1_15042124750 图片路径和分数,以此类推
要求统计出每个人的分数小于7的个数,如果为0,则不输出
统计通过率0-通过率9的sheet
'''
import pandas
import pyexcel
file1 = r"pass_ST_Verify_3.47.0_SNPE.model.xls"
output_ = r"output.xls"
value = 0.9
datas = {'output':[("人名","不合格数量")]}
data_frame = pandas.read_excel(
file1, sheet_name=None, header=None)
for worksheet_name, df1 in data_frame.items():
if not '通过率' in str(worksheet_name):
continue
names = df1.loc[0].dropna()
df1.loc[0] = df1.loc[0].fillna(method='ffill')
df2 = df1.T
df2.index = [df1.loc[0].fillna(method='ffill'), df1.loc[1]]
for name in names:
df3 = df2.loc[name].T.dropna()[2:]
count = len(df3.loc[df3['score'].astype(float)<value])
if count:
print(name, count)
datas['output'].append((name, count))
pyexcel.save_book_as(bookdict=datas, dest_file_name=output_)