-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathmodel.py
130 lines (104 loc) · 4.47 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
def conv(in_channels, out_channels, kernel_size=3, padding=1, bn=True, dilation=1, stride=1, relu=True, bias=True):
modules = [nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias)]
if bn:
modules.append(nn.BatchNorm2d(out_channels))
if relu:
modules.append(nn.ReLU(inplace=True))
return nn.Sequential(*modules)
class Decoder(nn.Module):
def __init__(self, in_channels, squeeze_channels):
super().__init__()
self.squeeze = conv(in_channels, squeeze_channels)
def forward(self, x, encoder_features):
x = self.squeeze(x)
x = F.interpolate(x, size=(encoder_features.shape[2], encoder_features.shape[3]),
mode='bilinear', align_corners=True)
up = torch.cat([encoder_features, x], 1)
return up
class FOTSModel(nn.Module):
def __init__(self, crop_height=640):
super().__init__()
self.crop_height = crop_height
self.resnet = torchvision.models.resnet34(pretrained=True)
self.conv1 = nn.Sequential(
self.resnet.conv1,
self.resnet.bn1,
self.resnet.relu,
) # 64
self.encoder1 = self.resnet.layer1 # 64
self.encoder2 = self.resnet.layer2 # 128
self.encoder3 = self.resnet.layer3 # 256
self.encoder4 = self.resnet.layer4 # 512
self.center = nn.Sequential(
conv(512, 512, stride=2),
conv(512, 1024)
)
self.decoder4 = Decoder(1024, 512)
self.decoder3 = Decoder(1024, 256)
self.decoder2 = Decoder(512, 128)
self.decoder1 = Decoder(256, 64)
self.remove_artifacts = conv(128, 64)
self.confidence = conv(64, 1, kernel_size=1, padding=0, bn=False, relu=False)
self.distances = conv(64, 4, kernel_size=1, padding=0, bn=False, relu=False)
self.angle = conv(64, 1, kernel_size=1, padding=0, bn=False, relu=False)
def forward(self, x):
x = self.conv1(x)
x = F.max_pool2d(x, kernel_size=2, stride=2)
e1 = self.encoder1(x)
e2 = self.encoder2(e1)
e3 = self.encoder3(e2)
e4 = self.encoder4(e3)
f = self.center(e4)
d4 = self.decoder4(f, e4)
d3 = self.decoder3(d4, e3)
d2 = self.decoder2(d3, e2)
d1 = self.decoder1(d2, e1)
final = self.remove_artifacts(d1)
confidence = self.confidence(final)
distances = self.distances(final)
distances = torch.sigmoid(distances) * self.crop_height
angle = self.angle(final)
angle = torch.sigmoid(angle) * np.pi / 2
return confidence, distances, angle
# class FOTSModel(nn.Module):
# """This model is described in the paper, but it trains slower and gives slightly worse results"""
# def __init__(self, crop_height=640):
# super().__init__()
# self.crop_height = crop_height
# self.resnet = torchvision.models.resnet50(pretrained=True)
# self.conv1 = nn.Sequential(
# self.resnet.conv1,
# self.resnet.bn1,
# self.resnet.relu,
# ) # 64 * 4
# self.encoder1 = self.resnet.layer1 # 64 * 4
# self.encoder2 = self.resnet.layer2 # 128 * 4
# self.encoder3 = self.resnet.layer3 # 256 * 4
# self.encoder4 = self.resnet.layer4 # 512 * 4
# self.decoder3 = Decoder(512 * 4, 256 * 4)
# self.decoder2 = Decoder(256 * 4 * 2, 128 * 4)
# self.decoder1 = Decoder(128 * 4 * 2, 64 * 4)
# self.confidence = conv(64 * 4 * 2, 1, kernel_size=1, padding=0, bn=False, relu=False)
# self.distances = conv(64 * 4 * 2, 4, kernel_size=1, padding=0, bn=False, relu=False)
# self.angle = conv(64 * 4 * 2, 1, kernel_size=1, padding=0, bn=False, relu=False)
# def forward(self, x):
# x = self.conv1(x)
# x = F.max_pool2d(x, kernel_size=2, stride=2)
# e1 = self.encoder1(x)
# e2 = self.encoder2(e1)
# e3 = self.encoder3(e2)
# e4 = self.encoder4(e3)
# d3 = self.decoder3(e4, e3)
# d2 = self.decoder2(d3, e2)
# d1 = self.decoder1(d2, e1)
# confidence = self.confidence(d1)
# distances = self.distances(d1)
# distances = torch.sigmoid(distances) * self.crop_height
# angle = self.angle(d1)
# angle = torch.sigmoid(angle) * np.pi / 2
# return confidence, distances, angle