diff --git a/src/worldcereal/openeo/preprocessing.py b/src/worldcereal/openeo/preprocessing.py index 15d40567..17f6acf7 100644 --- a/src/worldcereal/openeo/preprocessing.py +++ b/src/worldcereal/openeo/preprocessing.py @@ -82,8 +82,7 @@ def raw_datacube_S2( collection_id="SENTINEL2_L2A", bands=["SCL"], temporal_extent=[temporal_extent.start_date, temporal_extent.end_date], - spatial_extent=dict( - spatial_extent) if fetch_type == FetchType.TILE else None, + spatial_extent=dict(spatial_extent) if fetch_type == FetchType.TILE else None, properties=scl_cube_properties, ) @@ -107,8 +106,7 @@ def raw_datacube_S2( if distance_to_cloud_flag: # Compute the distance to cloud and add it to the cube distance_to_cloud = scl_cube.apply_neighborhood( - process=UDF.from_file(Path(__file__).parent / - "udf_distance_to_cloud.py"), + process=UDF.from_file(Path(__file__).parent / "udf_distance_to_cloud.py"), size=[ {"dimension": "x", "unit": "px", "value": 256}, {"dimension": "y", "unit": "px", "value": 256}, @@ -125,8 +123,7 @@ def raw_datacube_S2( # Try filtering using the geometry if fetch_type == FetchType.TILE: - additional_masks = additional_masks.filter_spatial( - spatial_extent.to_geojson()) + additional_masks = additional_masks.filter_spatial(spatial_extent.to_geojson()) # Create the job to extract S2 extraction_parameters = {