-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_CP.py
717 lines (552 loc) · 24.1 KB
/
main_CP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
# -*- coding: utf-8 -*-
"""
Created on Wed May 12 10:14:45 2021
@author: 5106
"""
import math
import pylab
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import h5py
import torch.utils.data as Data
import matplotlib.pyplot as plt
from einops.layers.torch import Rearrange
from einops import rearrange
# from metrics import NMSELoss, Adap_NMSELoss
from models.model import CNN_LSTM, Informer, InformerStack, InformerL,InformerSL,InformerS,LSTM,LSTM1,RNN,GRU, InformerStack_e2e
from models.TSModels import Linear, DLinear, NLinear, TemporalConvNet, A2Attention, LPAN, LPAN_LSTM, TemporalConvNet2D
from models.TSAttention import MobileViT
import matplotlib.pyplot as plt
from thop import profile
from thop import clever_format
from einops import rearrange
from model_UMLP import *
from FreTS import Model_Fre
# from pvec import pronyvec
# from PAD import PAD3
import argparse
M = 32
N = 256
parser = argparse.ArgumentParser()
parser.add_argument('--data', type = str, default = '0')
parser.add_argument('--use_gpu', type = bool, default = 0)
parser.add_argument('--gpu_list', type = str, default='0', help='input gpu list')
parser.add_argument('--SNR', type = float, default = 10)
parser.add_argument('--seq_len', type=int, default = 10, help='input sequence length of Informer encoder')
parser.add_argument('--label_len', type=int, default = 5, help='start token length of Informer decoder')
parser.add_argument('--pred_len', type=int, default = 5, help='prediction sequence length')
parser.add_argument('--batch', type= int, default = 64)
parser.add_argument('--samples', type= int, default = 1)
parser.add_argument('--ir_test', type= int, default = 1)
parser.add_argument('--v_max', type= int, default = 60)
parser.add_argument('--v_min', type= int, default = 30)
# LSTM
parser.add_argument('--hs', type = int, default = 256)
parser.add_argument('--hl', type = int, default = 2)
# informer
parser.add_argument('--enc_in', type=int, default=M*N*2, help='encoder input size')
parser.add_argument('--dec_in', type=int, default=M*N*2, help='decoder input size')
parser.add_argument('--c_out', type=int, default=M*N*2, help='output size')
parser.add_argument('--d_model', type=int, default=256, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
parser.add_argument('--e_layers', type=int, default=4, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=3, help='num of decoder layers')
parser.add_argument('--d_ff', type=int, default=64, help='dimension of fcn')
parser.add_argument('--factor', type=int, default=5, help='probsparse attn factor')
parser.add_argument('--distil', action='store_false', help='whether to use distilling in encoder', default=True)
parser.add_argument('--dropout', type=float, default=0.05, help='dropout')
parser.add_argument('--attn', type=str, default='full', help='attention used in encoder, options:[prob, full]')
# parser.add_argument('--embed', type=str, default='timeF', help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--embed', type=str, default='fixed', help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--activation', type=str, default='gelu',help='activation')
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
args = parser.parse_args()
# Parameters Setting for Training
gpu_list = args.gpu_list
# 使用GPU
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = gpu_list
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# informerL = InformerL(
# args.enc_in,
# args.dec_in,
# args.c_out,
# args.seq_len,
# args.label_len,
# args.pred_len,
# args.factor,
# 64, #args.d_model,
# args.n_heads,
# args.e_layers,
# args.d_layers,
# args.d_ff,
# args.dropout,
# args.attn,
# args.embed,
# args.activation,
# args.output_attention,
# args.distil,
# device
# )
# # model structure
# informer_e2e = InformerStack_e2e(
# args.enc_in,
# args.dec_in,
# args.c_out,
# args.seq_len,
# args.label_len,
# args.pred_len,
# args.factor,
# 64,
# args.n_heads,
# args.e_layers,
# args.d_layers,
# args.d_ff,
# args.dropout,
# args.attn,
# args.embed,
# args.activation,
# args.output_attention,
# args.distil,
# device
# )
# gru = GRU(args.enc_in, args.enc_in, args.hs, args.hl).to(device)
# linear = Linear(args.seq_len, args.pred_len,args.enc_in, 1).to(device)
# Dlinear = DLinear(args.seq_len, args.pred_len,args.enc_in, 1).to(device)
# Nlinear = NLinear(args.seq_len, args.pred_len,args.enc_in, 1).to(device)
np.random.seed(0)
# 计算NMSE
def NMSE(x, x_hat):
x_real = np.reshape(x[:, 0, :, :], (len(x), -1))
x_imag = np.reshape(x[:, 1, :, :], (len(x), -1))
x_hat_real = np.reshape(x_hat[:, 0, :, :], (len(x_hat), -1))
x_hat_imag = np.reshape(x_hat[:, 1, :, :], (len(x_hat), -1))
x_C = x_real + 1j * (x_imag )
x_hat_C = x_hat_real + 1j * (x_hat_imag )
power = np.sum(abs(x_C) ** 2, axis=1)
mse = np.sum(abs(x_C - x_hat_C) ** 2, axis=1)
nmse = np.mean(mse / power)
return nmse
index_Net = 5 # 网络选择指示器
index_LSTM = 1
deep_supervision = 0
regularization = 0
flag = 0 # 输入数据为3维张量
if index_Net ==1:
model = MobileViT(args.seq_len, args.label_len).to(device)
# regularization = 1
elif index_Net ==2:
flag =1 # 输入数据为3维张量
lstm = LSTM(args.enc_in, args.enc_in, args.hs, args.hl).to(device)
cnn_lstm = CNN_LSTM(args.seq_len, args.enc_in, args.enc_in, args.hs, args.hl).to(device)
rnn = RNN(args.enc_in, args.enc_in, args.hs, args.hl).to(device)
if index_LSTM == 1:
model = lstm.to(device)
elif index_LSTM == 2:
model = cnn_lstm.to(device)
flag = 0
else:
model = rnn.to(device)
elif index_Net ==3:
if index_LSTM == 1:
model = LPAN(args.seq_len, args.label_len).to(device)
elif index_LSTM == 2:
model = LPAN_LSTM(args.seq_len, args.label_len, args.enc_in).to(device)
elif index_Net ==4:
if index_LSTM == 1:
model = TemporalConvNet(args.enc_in,args.enc_in, args.pred_len,[64, 128, 256]).to(device)
flag =1 # 输入数据为3维张量
else:
model = TemporalConvNet2D(args.seq_len, args.label_len, args.enc_in,args.enc_in, args.pred_len,[64, 128, 256]).to(device)
elif index_Net == 5:
from UMLP_plus import *
deep_supervision = 1
model = channel_est_pruning(args.seq_len, args.label_len, N, M*2, deep_supervision = deep_supervision).to(device)
# from UMLP_wave import *
# model = channel_est(args.seq_len, args.label_len, N,M*2).to(device)
else:
model = channel_est(args.seq_len, args.label_len, N,M*2).to(device)
# if flag ==0:
# inputs = torch.randn(1,args.seq_len,N,M*2).to(device)
# flops, params = profile(model, inputs=(inputs,))
# else:
# inputs = torch.randn(1,args.seq_len,N*M*2).to(device)
# flops, params = profile(model, inputs=(inputs, args.pred_len, device))
# flops, params = clever_format([flops, params], "%.3f")
# print('flops: ', flops, 'params: ', params)
# 读取数据集
# 训练集
class MyDataset(Dataset):
def __init__(self):
dataName = 'Sat_RIS_HF_R3_{}input_{}output_{}antenna_{}element.mat'.format(args.seq_len, args.pred_len,M,N)
path=dataName
with h5py.File(path, 'r') as file:
train_h1 = np.transpose(np.array(file['output_da1']))
with h5py.File(path, 'r') as file:
train_y1 = np.transpose(np.array(file['input_da1']))
# train_y1 = train_y1.transpose([0,3,1,2])
self.X = train_y1.astype(np.float32)
self.Y1 = train_h1.astype(np.float32)
del file
self.len = len(self.X)
def __len__(self):
# return len(self.X)
return self.len
def __getitem__(self, idx):
x = self.X[idx]
y1 = self.Y1[idx]
# y2 = self.Y2[idx]
return (x, y1)
class MyDatasetVal(Dataset):
def __init__(self):
dataName = 'Sat_RIS_HF_R3_{}input_{}output_{}antenna_{}element.mat'.format(args.seq_len, args.pred_len,M,N)
path=dataName
with h5py.File(path, 'r') as file:
train_h1 = np.transpose(np.array(file['output_da_test1']))
with h5py.File(path, 'r') as file:
train_y1 = np.transpose(np.array(file['input_da_test1']))
# train_y1 = train_y1.transpose([0,3,1,2])
self.X = train_y1.astype(np.float32)
self.Y1 = train_h1.astype(np.float32)
del file
self.len = len(self.X)
def __len__(self):
# return len(self.X)
return self.len
def __getitem__(self, idx):
x = self.X[idx]
y1 = self.Y1[idx]
# y2 = self.Y2[idx]
return (x, y1)
# 读取测试集
class MyDataset1(Dataset):
def __init__(self):
dataName = 'Sat_RIS_HF_R3_test_{}input_{}output_{}antenna_{}element.mat'.format(args.seq_len, args.pred_len,M,N)
path=dataName
# path="Sat_test_25input_5output_256antenna.mat"
with h5py.File(path, 'r') as file:
train_h1 = np.transpose(np.array(file['Hd1']))
with h5py.File(path, 'r') as file:
train_y1 = np.transpose(np.array(file['Yd1']))
self.X = train_y1.astype(np.float32)
self.Y1 = train_h1.astype(np.float32)
del file
self.len = len(self.X)
def __len__(self):
return self.len
def __getitem__(self, idx):
x = self.X[idx]
y1 = self.Y1[idx]
return (x, y1)
BATCH_SIZE=16
train_dataset = MyDataset()
train_loader = DataLoader(dataset=train_dataset,
batch_size=BATCH_SIZE,
shuffle=True) # shuffle
test_BATCH_SIZE=20
test_dataset = MyDatasetVal()
test_loader = DataLoader(dataset=test_dataset,
batch_size=test_BATCH_SIZE,
shuffle=False,drop_last=True) # shuffle
del train_dataset
del test_dataset
loss_func = nn.L1Loss().to(device)
loss_nmse = NMSELoss().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001, eps=1e-07,weight_decay=1e-5)
# optimizer = torch.optim.SGD(model.parameters(), lr=0.0001, momentum=0.9, weight_decay=5e-4,nesterov=True)
# optimizer = torch.optim.RMSprop(model.parameters(), lr=0.01, alpha=0.99, eps=1e-08, weight_decay=1e-3, momentum=0.9, centered=False)
epochs = 50
cost1tr = []
cost2tr = []
cost1D = []
cost2D = []
cost1ts = []
cost2ts = []
costtr = []
costD = []
costts = []
tr_nmse2 = []
tr_nmse3 = []
tr_nmse4 = []
nm1=[]
nm2=[]
# 余弦学习率下降规则
def adjust_learning_rate(optimizer, epoch,learning_rate_init,learning_rate_final):
lr = learning_rate_final + 0.5*(learning_rate_init-learning_rate_final)*(1+math.cos((epoch*3.14)/epochs))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
# 定义L1正则化函数
def l1_regularizer(model, lambda_l1):
l1_norm = sum(p.abs().sum() for p in model.parameters())
return lambda_l1 * l1_norm
# 计算正则化的损失
# 网络训练
if index_Net ==1:
modelName = 'Informer_R3.pth'
elif index_Net ==2:
modelName = 'LSTM_R3.pth'
elif index_Net ==3:
modelName = 'CNN_LSTM_R3.pth'
elif index_Net ==4:
modelName = 'TCN_R3.pth'
elif index_Net ==5:
modelName = 'Uplus_R3.pth'
else:
modelName = 'uMLP_R3.pth'
# model = torch.load(modelName).to(device)
index_flop=0
data_aug = 0
bestLoss = 10
# model = torch.load(modelName).to(device)
for it in range(epochs):
lr = adjust_learning_rate(optimizer, it,1e-3,1e-5)
model.train()
epoch_cost = 0
epoch_cost1 = 0
epoch_cost2 = 0
mb_size = 32
iteration =0
for i, (x, y1) in enumerate(train_loader):
a,b,c,d=x.size()
XE, YE1= x.to(device), y1.to(device)
if data_aug == 1:
mix_input, mix_label = cutmixup(
XE, YE1,
mixup_prob=0.1, mixup_alpha=1.2,
cutmix_prob=0.1, cutmix_alpha=0.7
)
# mix_input, mix_label = mixup(mix_input, mix_label, prob=0.1, alpha=0.4)
# mix_input, mix_label = cutmix(mix_input, mix_label, prob=0.4, alpha=0.7)
# modelInput, label = rgb(mix_input, mix_label, prob=0.2)
XE, YE1 = rgb1(mix_input, mix_label, prob=0.1)
if flag == 1:
XE = rearrange(XE, 'b c h w -> b c (h w)')
YE1 = rearrange(YE1, 'b c h w -> b c (h w)')
# 如果使用 Transfomer, 网络输入数据
if index_Net ==1:
Yhat1 = model(XE)
# 统计计算复杂度
if index_flop==1:
flops, params = profile(model, inputs=(XE[0,:].unsqueeze(0),))
# 如果使用 LSTM, 网络输入数据
elif index_Net ==2:
Yhat1 = model.test_data(XE, args.pred_len, device)
if index_flop==1:
flops, params = profile(model, inputs=(XE[0,:].unsqueeze(0), args.pred_len, device))
# 如果使用线性网络,网络输入数据
else:
# mix_input, mix_label = cutmixup(
# XE, YE1,
# mixup_prob=0.2, mixup_alpha=1.2,
# cutmix_prob=0.2, cutmix_alpha=0.7
# )
# mix_input, mix_label = mixup(mix_input, mix_label, prob=0.2, alpha=0.4)
# # mix_input, mix_label = cutmix(mix_input, mix_label, prob=0.4, alpha=0.7)
# # modelInput, label = rgb(mix_input, mix_label, prob=0.2)
# XE, YE1 = rgb1(mix_input, mix_label, prob=0.2)
Yhat1 = model(XE)
if deep_supervision:
# Yhat1 = model(XE)
loss = 0
for output in Yhat1:
# loss += loss_func(output, YE1)
# 原时域损失
# loss_tmp = ((output-YE1)**2).mean()
loss_tmp = loss_func(output, YE1)
# 所提频域损失
loss_feq = (torch.fft.rfft(output, dim=1) - torch.fft.rfft(YE1, dim=1)).abs().mean()
# 注释1. 频域损失可与时域损失加权融合,也可单独使用,一般均有性能提升,见灵敏度实验部分。
# 注释2. 频域损失使用MAE而不是MSE,是因为不同频谱分量的量级相差非常大。使用MSE会进一步放大这种差异,导致优化过程不稳定。
loss += 0.6 * loss_tmp + 0.4 * loss_feq
loss /= len(Yhat1)
Yhat1 = Yhat1[-1]
# else:
# Yhat1 = model(XE)
# if index_flop==1:
# flops, params = profile(model, inputs=(XE[0,:].unsqueeze(0),))
# if index_flop==1:
# flops, params = clever_format([flops, params], "%.3f")
# print('flops: ', flops, 'params: ', params)
# if deep_supervision:
# Yhat1 = Yhat1[-1]
else:
loss = loss_func(Yhat1, YE1)
optimizer.zero_grad()
if regularization ==1:
regularization_loss = l1_regularizer(model, lambda_l1=0.00001)
total_loss = loss + regularization_loss
total_loss.backward()
# torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
# torch.nn.utils.clip_grad_value_(model.parameters(), clip_value=1.0)
else:
loss.backward()
optimizer.step()
if i%50==0:
nmsei=np.zeros([a, 1])
for i1 in range(a):
nmsei[i1] = np.sum(np.square(np.abs(Yhat1[i1,:,:].cpu().detach().numpy()-YE1[i1,:,:].cpu().numpy()))) / np.sum(np.square(np.abs(YE1[i1,:,:].cpu().numpy())))
tr_nmse = np.sum(nmsei) / a
print("===> Epoch[{}]({}/{}) nmse: {:.4f}".format(
it, i, len(train_loader),10*np.log10(tr_nmse)))
# epoch_cost = epoch_cost + (loss / BATCH_SIZE)
epoch_cost = epoch_cost + loss
costtr.append(epoch_cost/(i+1))
print('Iter-{}; Total loss: {:.4}'.format(it, epoch_cost.item()))
with torch.no_grad():
model.eval()
epoch_cost = 0
tr_nmse1 = []
for i, (x, y1) in enumerate(test_loader):
XE, YE1 = x.to(device), y1.to(device)
if flag == 1:
XE = rearrange(XE, 'b c h w -> b c (h w)')
YE1 = rearrange(YE1, 'b c h w -> b c (h w)')
# 如果使用 Transfomer, 网络输入数据
if index_Net ==1:
# inp_net = XE
# enc_inp = inp_net
# dec_inp = torch.zeros_like( inp_net[:, -args.pred_len:, :] ).to(device)
# dec_inp = torch.cat([inp_net[:, args.seq_len - args.label_len:args.seq_len, :], dec_inp], dim=1)
# Yhat1 = model(enc_inp, dec_inp)
Yhat1 = model(XE)
# 如果使用 LSTM, 网络输入数据
elif index_Net ==2:
Yhat1 = model.test_data(XE, args.pred_len, device)
# 如果使用线性网络,网络输入数据
else:
Yhat1 = model(XE)
if deep_supervision:
Yhat1 = Yhat1[-1]
loss = loss_func(Yhat1, YE1)
# epoch_cost = epoch_cost + (loss / test_BATCH_SIZE)
epoch_cost = epoch_cost + loss
# 计算NMSE
nmsei1=np.zeros([YE1.shape[0], 1])
for i1 in range(YE1.shape[0]):
nmsei1[i1] = np.sum(np.square(np.abs(Yhat1[i1,:].cpu().detach().numpy()-YE1[i1,:].cpu().detach().numpy()))) / np.sum(np.square(np.abs(YE1[i1,:].cpu().detach().numpy())))
tr_nmse1.append(np.mean(nmsei1))
nm1.append(np.mean(tr_nmse1))
costD.append(torch.mean(epoch_cost)/(i+1))
print('Iter-{}; valLoss: {:.4}; NMSE: {:.4}'.format(it, torch.mean(epoch_cost)/(i+1), 10*np.log10(np.mean(tr_nmse1))))
# 保存最优模型
if np.mean(tr_nmse1) < bestLoss:
# if index_Net ==1:
# modelName = 'Informer_epoch{}.pth'.format(it)
# elif index_Net ==2:
# modelName = 'LSTM_epoch{}.pth'.format(it)
# else:
# modelName = 'Linear_epoch{}.pth'.format(it)
torch.save(model, modelName)
print("Model saved")
bestLoss = np.mean(tr_nmse1)
del train_loader
test1_nmse=[]
test2_nmse=[]
test3_nmse=[]
test4_nmse=[]
nmse1_snr=[]
nmse2_snr=[]
nmse3_snr=[]
nmse4_snr=[]
model = torch.load(modelName).to(device)
test_BATCH_SIZE=50
test_dataset = MyDataset1()
test_loader = DataLoader(dataset=test_dataset,
batch_size=test_BATCH_SIZE,
shuffle=False, drop_last=True) # shuffle 标识要打乱顺序
del test_dataset
with torch.no_grad():
model.eval()
for i, (x, y1) in enumerate(test_loader):
XE, YE1= x.to(device), y1.to(device)
if flag == 1:
XE = rearrange(XE, 'b c h w -> b c (h w)')
YE1 = rearrange(YE1, 'b c h w -> b c (h w)')
# 如果使用 Transfomer, 网络输入数据
if index_Net ==1:
# inp_net = XE
# enc_inp = inp_net
# dec_inp = torch.zeros_like( inp_net[:, -args.pred_len:, :] ).to(device)
# dec_inp = torch.cat([inp_net[:, args.seq_len - args.label_len:args.seq_len, :], dec_inp], dim=1)
# Yhat1 = model(enc_inp, dec_inp)
Yhat1 = model(XE)
# 如果使用 LSTM, 网络输入数据
elif index_Net ==2:
Yhat1 = model.test_data(XE, args.pred_len, device)
# 如果使用线性网络,网络输入数据
else:
Yhat1 = model(XE)
if deep_supervision:
Yhat1 = Yhat1[-1]
nmsei1=np.zeros([YE1.shape[0], YE1.shape[1]])
for i1 in range(YE1.shape[0]):
for i2 in range(YE1.shape[1]):
nmsei1[i1,i2] = np.sum(np.square(np.abs(Yhat1[i1,i2,:].cpu().detach().numpy()-YE1[i1,i2,:].cpu().detach().numpy()))) / np.sum(np.square(np.abs(YE1[i1,i2,:].cpu().detach().numpy())))
nmse1 =np.mean(nmsei1,axis=0)
test1_nmse.append(nmse1)
if (i+1)%6==0:
nmse1_snr.append(np.mean(test1_nmse,axis=0))
test1_nmse=[]
# 绘制NMSE结果图
# NMSE v.s. SNR
a=np.mean(nmse1_snr,axis=1)
nmse1_db=10*np.log10(np.mean(nmse1_snr,axis=1))
# nmse1_db=10*np.log10(nmse1_snr[(0,4)])
snrs = np.linspace(-20,20,9)
plt.plot(snrs, nmse1_db,ls='-', marker='+', c='black',label='Linear')
plt.legend()
plt.grid(True)
plt.xlabel('SNR/dB')
plt.ylabel('NMSE/dB')
plt.show()
# NMSE v.s. slots
plt.figure
nmse1_db_s=10*np.log10(nmse1_snr[4])
slots = np.linspace(1,args.pred_len,args.pred_len)
plt.plot(slots, nmse1_db_s,ls='-', marker='+', c='black',label='LSTM')
plt.legend()
plt.grid(True)
plt.xlabel('slots')
plt.ylabel('NMSE/dB')
plt.show()
# Loss v.s. epochs
plt.figure
nmse1_db_s=torch.tensor(costtr).cpu()
slots = np.linspace(1,epochs,epochs)
plt.plot(slots, nmse1_db_s,ls='-', marker='+', c='black',label='LSTM')
plt.legend()
plt.grid(True)
plt.xlabel('Training epochs')
plt.ylabel('Loss')
plt.show()
# import scipy.io as sio # mat
# if index_Net ==1:
# dataName_trloss = 'Informer1{}_in_{}_out_{}_fea_{}_R3_trloss.mat'.format(data_aug,args.seq_len, args.pred_len,args.enc_in//2)
# dataName_valloss = 'Informer1{}_in_{}_out_{}_fea_{}_R3_valloss.mat'.format(data_aug,args.seq_len, args.pred_len,args.enc_in//2)
# dataName_slot = 'Informer1{}_in_{}_out_{}_fea_{}_R3_slot.mat'.format(data_aug, args.seq_len, args.pred_len, args.enc_in//2)
# elif index_Net ==2:
# dataName_trloss = 'LSTM1{}_in_{}_out_{}_fea_{}_R3_trloss.mat'.format(data_aug, args.seq_len, args.pred_len, args.enc_in//2)
# dataName_valloss = 'LSTM1{}_in_{}_out_{}_fea_{}_R3_valloss.mat'.format(data_aug, args.seq_len, args.pred_len, args.enc_in//2)
# dataName_slot = 'LSTM1{}_in_{}_out_{}_fea_{}_R3_slot.mat'.format(data_aug, args.seq_len, args.pred_len, args.enc_in//2)
# elif index_Net ==3:
# dataName_trloss = 'CNN-LSTM1{}_in_{}_out_{}_fea_{}_R3_trloss.mat'.format(data_aug, args.seq_len, args.pred_len, args.enc_in//2)
# dataName_valloss = 'CNN-LSTM1{}_in_{}_out_{}_fea_{}_R3_valloss.mat'.format(data_aug, args.seq_len, args.pred_len, args.enc_in//2)
# dataName_slot = 'CNN-LSTM1{}_in_{}_out_{}_fea_{}_R3_slot.mat'.format(data_aug,args.seq_len, args.pred_len, args.enc_in//2)
# elif index_Net ==4:
# dataName_trloss = 'TCN1{}_in_{}_out_{}_fea_{}_R3_trloss.mat'.format(data_aug,args.seq_len, args.pred_len, args.enc_in//2)
# dataName_valloss = 'TCN1{}_in_{}_out_{}_fea_{}_R3_valloss.mat'.format(data_aug,args.seq_len, args.pred_len, args.enc_in//2)
# dataName_slot = 'TCN1{}_in_{}_out_{}_fea_{}_R3_slot.mat'.format(data_aug,args.seq_len, args.pred_len, args.enc_in//2)
# elif index_Net ==5:
# dataName_trloss = 'Uplus1{}_in_{}_out_{}_fea_{}_R3_trloss.mat'.format(data_aug,args.seq_len, args.pred_len,args.enc_in//2)
# dataName_valloss = 'Uplus1{}_in_{}_out_{}_fea_{}_R3_valloss.mat'.format(data_aug,args.seq_len, args.pred_len,args.enc_in//2)
# dataName_slot = 'Uplus1{}_in_{}_out_{}_fea_{}_R3_slot.mat'.format(data_aug,args.seq_len, args.pred_len,args.enc_in//2)
# else:
# dataName_trloss = 'uMLP1{}_in_{}_out_{}_fea_{}_R3_trloss.mat'.format(data_aug,args.seq_len, args.pred_len,args.enc_in//2)
# dataName_valloss = 'uMLP1{}_in_{}_out_{}_fea_{}_R1_valloss.mat'.format(data_aug,args.seq_len, args.pred_len,args.enc_in//2)
# dataName_slot = 'uMLP1{}_in_{}_out_{}_fea_{}_R1_slot.mat'.format(data_aug,args.seq_len, args.pred_len,args.enc_in//2)
# sio.savemat(dataName_trloss, {'a':torch.tensor(costtr).cpu().numpy()})
# sio.savemat(dataName_valloss, {'a':torch.tensor(costD).cpu().numpy()})
# sio.savemat(dataName_slot, {'a':nmse1_snr})