-
Notifications
You must be signed in to change notification settings - Fork 112
/
predict.py
123 lines (103 loc) · 4.25 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# -*- coding: utf-8 -*-
# @Time : 2019/8/24 12:06
# @Author : zhoujun
import torch
from torchvision import transforms
import os
import cv2
import time
from models import get_model
from post_processing import decode
def decode_clip(preds, scale=1, threshold=0.7311, min_area=5):
import pyclipper
import numpy as np
preds[:2, :, :] = torch.sigmoid(preds[:2, :, :])
preds = preds.detach().cpu().numpy()
text = preds[0] > threshold # text
kernel = (preds[1] > threshold) * text # kernel
label_num, label = cv2.connectedComponents(kernel.astype(np.uint8), connectivity=4)
bbox_list = []
for label_idx in range(1, label_num):
points = np.array(np.where(label == label_idx)).transpose((1, 0))[:, ::-1]
if points.shape[0] < min_area:
continue
rect = cv2.minAreaRect(points)
poly = cv2.boxPoints(rect).astype(int)
d_i = cv2.contourArea(poly) * 1.5 / cv2.arcLength(poly, True)
pco = pyclipper.PyclipperOffset()
pco.AddPath(poly, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
shrinked_poly = np.array(pco.Execute(d_i))
if shrinked_poly.size == 0:
continue
rect = cv2.minAreaRect(shrinked_poly)
shrinked_poly = cv2.boxPoints(rect).astype(int)
if cv2.contourArea(shrinked_poly) < 800 / (scale * scale):
continue
bbox_list.append([shrinked_poly[1], shrinked_poly[2], shrinked_poly[3], shrinked_poly[0]])
return label, np.array(bbox_list)
class Pytorch_model:
def __init__(self, model_path, gpu_id=None):
'''
初始化pytorch模型
:param model_path: 模型地址(可以是模型的参数或者参数和计算图一起保存的文件)
:param gpu_id: 在哪一块gpu上运行
'''
self.gpu_id = gpu_id
if self.gpu_id is not None and isinstance(self.gpu_id, int) and torch.cuda.is_available():
self.device = torch.device("cuda:%s" % self.gpu_id)
else:
self.device = torch.device("cpu")
print('device:', self.device)
checkpoint = torch.load(model_path, map_location=self.device)
config = checkpoint['config']
config['arch']['args']['pretrained'] = False
self.net = get_model(config)
self.img_channel = config['data_loader']['args']['dataset']['img_channel']
self.net.load_state_dict(checkpoint['state_dict'])
self.net.to(self.device)
self.net.eval()
def predict(self, img: str, short_size: int = 736):
'''
对传入的图像进行预测,支持图像地址,opecv 读取图片,偏慢
:param img: 图像地址
:param is_numpy:
:return:
'''
assert os.path.exists(img), 'file is not exists'
img = cv2.imread(img)
if self.img_channel == 3:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
h, w = img.shape[:2]
scale = short_size / min(h, w)
img = cv2.resize(img, None, fx=scale, fy=scale)
# 将图片由(w,h)变为(1,img_channel,h,w)
tensor = transforms.ToTensor()(img)
tensor = tensor.unsqueeze_(0)
tensor = tensor.to(self.device)
with torch.no_grad():
if str(self.device).__contains__('cuda'):
torch.cuda.synchronize(self.device)
start = time.time()
preds = self.net(tensor)[0]
if str(self.device).__contains__('cuda'):
torch.cuda.synchronize(self.device)
preds, boxes_list = decode(preds)
scale = (preds.shape[1] / w, preds.shape[0] / h)
if len(boxes_list):
boxes_list = boxes_list / scale
t = time.time() - start
return preds, boxes_list, t
if __name__ == '__main__':
import matplotlib.pyplot as plt
from utils.util import show_img, draw_bbox
os.environ['CUDA_VISIBLE_DEVICES'] = str('0')
model_path = 'output/PAN_shufflenetv2_FPEM_FFM.pth'
img_id = 10
img_path = 'E:/zj/dataset/icdar2015/test/img/img_{}.jpg'.format(img_id)
# 初始化网络
model = Pytorch_model(model_path, gpu_id=0)
preds, boxes_list, t = model.predict(img_path)
show_img(preds)
img = draw_bbox(cv2.imread(img_path)[:, :, ::-1], boxes_list)
show_img(img, color=True)
plt.show()