forked from karpathy/llm.c
-
Notifications
You must be signed in to change notification settings - Fork 1
/
test_gpt2.cu
392 lines (357 loc) · 17.9 KB
/
test_gpt2.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
#define TESTING
#include "train_gpt2.cu"
// poor man's tensor checker
int check_tensor(float *a, float *b, int n, const char* label, float threshold=1e-0) {
// a is the calculated tensor, b is the reference tensor
int print_upto = 10;
int ok = 1;
float max_diff = 0.0f;
float max_rel_error = 0.0f;
float max_to_threshold = 0.f;
float max_a = 0.0f;
float max_b = 0.0f;
float epsilon = 0.079; // BF16 epsilon value
printf("---\n");
printf("checking tensor: %s\n", label);
for (int i = 0; i < n; i++) {
float t_eff = threshold + fabs(b[i]) * epsilon;
float diff = fabsf(a[i] - b[i]);
max_to_threshold = max(max_to_threshold, diff / t_eff);
if (diff > max_diff) {
max_diff = diff;
float denom = fabsf(b[i]);
max_rel_error = (denom == 0.0f) ? 0.0f : diff / denom;
max_a = a[i];
max_b = b[i];
}
if (diff > t_eff) {
ok = 0;
}
// print the first few elements so we can visually assess the "proof" of the comparison
if (i < print_upto) {
printf(diff <= t_eff ? "OK " : "NOT OK ");
printf("%f %f\n", a[i], b[i]);
}
}
// print the final result
if (ok) {
printf("TENSOR OK, max diff: %.3e, with rel error: %.3e (calculated=%10f, ref=%10f), %.2f%% of maximum error\n",
max_diff, max_rel_error, max_a, max_b, max_to_threshold*100);
} else {
printf("TENSOR NOT OK, max diff: %.3e, with rel error: %.3e (calculated=%10f, ref=%10f), %.2f%% of maximum error\n",
max_diff, max_rel_error, max_a, max_b, max_to_threshold*100);
}
return ok;
}
// the same tensors as in the train file, but in float, which are used as reference
typedef struct {
float* wte; // (Vp, C)
float* wpe; // (maxT, C)
float* ln1w; // (L, C)
float* ln1b; // (L, C)
float* qkvw; // (L, 3*C, C)
float* qkvb; // (L, 3*C)
float* attprojw; // (L, C, C)
float* attprojb; // (L, C)
float* ln2w; // (L, C)
float* ln2b; // (L, C)
float* fcw; // (L, 4*C, C)
float* fcb; // (L, 4*C)
float* fcprojw; // (L, C, 4*C)
float* fcprojb; // (L, C)
float* lnfw; // (C)
float* lnfb; // (C)
} FloatParameterTensors;
static_assert(sizeof(FloatParameterTensors) == NUM_PARAMETER_TENSORS * sizeof(void*), "Inconsistent sizes!");
// malloc_and_point, but in float and on CPU, because we use this data to check correctness on CPU
float* float_cpu_malloc_and_point_parameters(FloatParameterTensors* params, size_t* param_sizes) {
// calculate the total number of parameters
size_t num_parameters = 0;
for (int i = 0; i < NUM_PARAMETER_TENSORS; i++) {
num_parameters += param_sizes[i];
}
// everything is float so number of bytes to allocate is a simple multiplication
float* params_memory = (float*)mallocCheck(num_parameters * sizeof(float));
float** ptrs[] = {
¶ms->wte, ¶ms->wpe, ¶ms->ln1w, ¶ms->ln1b, ¶ms->qkvw, ¶ms->qkvb,
¶ms->attprojw, ¶ms->attprojb, ¶ms->ln2w, ¶ms->ln2b, ¶ms->fcw, ¶ms->fcb,
¶ms->fcprojw, ¶ms->fcprojb, ¶ms->lnfw, ¶ms->lnfb
};
float* params_memory_iterator = params_memory;
for (int i = 0; i < NUM_PARAMETER_TENSORS; i++) {
*(ptrs[i]) = params_memory_iterator;
params_memory_iterator += param_sizes[i];
}
return params_memory;
}
int main(int argc, char *argv[]) {
char nccl_init_method[256] = "mpi"; // "tcp" or "fs" or "mpi"
int num_processes = -1; // doesn't matter when using MPI
int process_rank = -1; // doesn't matter when using MPI
int gpus_per_node = -1; // doesn't matter when using MPI
char server_ip[256] = ""; // doesn't matter when using MPI
char fs_path[256] = ""; // doesn't matter when using MPI
multi_gpu_config = multi_gpu_config_init(num_processes, process_rank, gpus_per_node, server_ip, fs_path, nccl_init_method);
common_start(false, true);
// set the right paths
#if defined(ENABLE_BF16)
const char* load_filename = "gpt2_124M_bf16.bin";
#else
const char* load_filename = "gpt2_124M.bin";
#endif
// build the GPT-2 model from a checkpoint
GPT2 model;
gpt2_init_common(&model);
gpt2_build_from_checkpoint(&model, load_filename);
size_t V = model.config.vocab_size;
size_t Vp = model.config.padded_vocab_size;
size_t maxT = model.config.max_seq_len;
size_t L = model.config.num_layers;
size_t C = model.config.channels;
for (int i = 1; i < argc; i+=2) {
if (i + 1 >= argc) { exit(EXIT_FAILURE); } // must have arg after flag
if (!(strlen(argv[i]) == 2 || strlen(argv[i]) == 3)) { exit(EXIT_FAILURE); } // must be -x[y] (one dash, one or two letters)
if (argv[i][0] != '-') { exit(EXIT_FAILURE); } // must start with dash
if (argv[i][1] == 'w') { model.use_master_weights = atoi(argv[i+1]); }
else if (argv[i][1] == 'r') { model.recompute = atoi(argv[i+1]); }
else if (argv[i][1] == 'g' && argv[i][2] == 'e') { model.gelu_fusion = atoi(argv[i+1]); }
}
// load additional information that we will use for debugging and error checking
FILE *state_file = fopenCheck("gpt2_124M_debug_state.bin", "rb");
int state_header[256];
freadCheck(state_header, sizeof(int), 256, state_file);
if (state_header[0] != 20240327) { fprintf(stderr, "Bad magic state file\n"); exit(EXIT_FAILURE); }
if (state_header[1] != 2) {
fprintf(stderr, "Bad version in state file\n");
fprintf(stderr, "---> HINT: try to re-run `python train_gpt2.py`\n");
exit(EXIT_FAILURE);
}
int B = state_header[2]; // batch size, e.g. 4
int T = state_header[3]; // time / sequence length (e.g. 64, up to maxT)
assert(0 <= T && T <= maxT);
printf("[State]\n");
printf("batch_size: %d\n", B);
printf("seq_len: %d\n", T);
set_zero_configs(&multi_gpu_config, 0, model.num_parameters);
// read reference information from the file saved from Python/PyTorch side
// 1) input x and y
int* x = (int*)mallocCheck(B * T * sizeof(int));
int* y = (int*)mallocCheck(B * T * sizeof(int));
freadCheck(x, sizeof(int), B*T, state_file);
freadCheck(y, sizeof(int), B*T, state_file);
// 2) results of forward pass (logits and loss)
float* expected_logits = (float*) mallocCheck(B * T * V * sizeof(float));
float* expected_loss = (float*) mallocCheck(1 * sizeof(float));
freadCheck(expected_logits, sizeof(float), B*T*V, state_file);
freadCheck(expected_loss, sizeof(float), 1, state_file);
// 3) results of backward pass (parameter gradients)
FloatParameterTensors expected_grads; // will be read from file. right now: all in fp32
float* expected_grads_memory = float_cpu_malloc_and_point_parameters(&expected_grads, model.param_elements);
freadCheck(expected_grads_memory, sizeof(float), model.num_parameters, state_file);
fcloseCheck(state_file);
// this memory will be used to do one single copy of all (mixed precision) GPU grads to CPU grads
void* grads_memory_cpu = mallocCheck(model.num_parameters_bytes);
float* grads_memory_cpu_float = (float*)mallocCheck(model.num_parameters * sizeof(float));
// overall OK signal for the test
int allok = 1;
// First, do target-free forward pass to validate logits
gpt2_forward(&model, x, B, T);
// at this point, target should be equal to expected_logits, let's compare
// copy logits to CPU so we can compare them
floatX* logits_cpu_raw = (floatX*)mallocCheck(B * T * Vp * sizeof(floatX));
float* logits_cpu = (float*)mallocCheck(B * T * Vp * sizeof(float));
cudaCheck(cudaMemcpy(logits_cpu_raw, model.acts.output, B * T * Vp * sizeof(floatX), cudaMemcpyDeviceToHost));
for (int i = 0; i < B * T * Vp; i++) {
logits_cpu[i] = (float)logits_cpu_raw[i];
}
float logit_accuracy_threshold = 1e-3f;
float loss_diff_threshold = 1e-5f;
// FP16 and lower require very high tolerances unfortunately. TODO look into more
#if defined(ENABLE_BF16) || defined(ENABLE_F16)
logit_accuracy_threshold = 25.0f; // 15.0f was too low even without cuDNN?! :(
loss_diff_threshold = 0.05f;
#endif
// compare the output logits from the forward pass
// also careful that we don't access and compare the padded columns of logits
int logits_ok = 1;
float max_diff = 0.0f;
for (int bt = 0; bt < B*T; bt++) {
for (int v = 0; v < V; v++) {
int i = bt * Vp + v; // linearized index
if (i < 10) {
printf("%f, %f\n", expected_logits[i], logits_cpu[i]);
}
float diff = fabsf(expected_logits[bt*V + v] - logits_cpu[i]);
max_diff = fmaxf(max_diff, diff);
if (diff >= logit_accuracy_threshold) {
printf("MISMATCH AT INDEX %d,%d: ", bt, v);
printf("%f %f\n", expected_logits[bt*V + v], logits_cpu[i]);
logits_ok = 0;
bt = B*T; // to break out of both loops
break;
}
}
}
allok = allok && logits_ok;
if(!logits_ok) { printf("NOT "); }
printf("OK (LOGITS)\n");
printf("logit max diff: %f\n", max_diff);
// let's do 10 training iterations, following the pytorch code
float losses[10];
for (int step = 0; step < 10; step++) {
struct timespec start, end;
clock_gettime(CLOCK_MONOTONIC, &start);
gpt2_forward(&model, x, B, T);
gpt2_backward_and_reduce(&model, x, y, 1, 0);
clock_gettime(CLOCK_MONOTONIC, &end);
double time_elapsed_s = (end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec) / 1e9;
if (step == 0) {
// error checking at step 0 for reference activations
// move the (mixed precision) grads from GPU to CPU
cudaCheck(cudaMemcpy(grads_memory_cpu, model.grads_memory, model.num_parameters_bytes, cudaMemcpyDeviceToHost));
// convert all gradients to float on the CPU
char* src_iterator = (char*)grads_memory_cpu; // can be lower precision, so we use char*
float* dst_iterator = (float*)grads_memory_cpu_float; // float*
float* exp_iterator = expected_grads_memory; // float* of expected gradients from Python
float* tensors1[NUM_PARAMETER_TENSORS];
float* tensors2[NUM_PARAMETER_TENSORS];
for (int i = 0; i < NUM_PARAMETER_TENSORS; i++) {
if (model.param_sizeof[i] == sizeof(float)) {
// float tensor => copy over directly
memcpy(dst_iterator, src_iterator, model.param_elements[i] * sizeof(float));
} else {
// low-precision tensor => convert to float
assert(model.param_sizeof[i] == sizeof(floatX)); // floatX is the single non-float supported atm
for (size_t j = 0; j < model.param_elements[i]; j++) {
dst_iterator[j] = ((floatX*)src_iterator)[j]; // convert to float
}
}
// for convenience record the position of comparison for reality vs. expectation
tensors1[i] = dst_iterator; // reality
tensors2[i] = exp_iterator; // expectation
// advance the iterators
src_iterator += model.param_elements[i] * model.param_sizeof[i];
dst_iterator += model.param_elements[i];
exp_iterator += model.param_elements[i];
}
// compare the gradients on the parameters all at once, in fp32
// I set the tolerances manually by inspecting the gradient differences for
// a few elements of each tensor. bf16 looks ok but not amazing here.
// It's possible we have bugs lurking, or maybe it is bf16. Not 100% sure.
// Also, if code changes and some of these get tripped, it could be ok if it's not by too much,
// because our use of stochastic rounding is adding some non-determinism "pepper noise".
// In that case it's ok to extend the tolerance by a bit, after a manual review.
// Also, different GPUs may use different matrix multiplication algorithms, so the
// actual errors can be hardware specific.
float grad_thresholds[NUM_PARAMETER_TENSORS] = {5e-1f, 4e-3f, 1e-1f, 3.5e-2f, 2e-2f, 3e-2f, 5e-2f, 5e-2f, 5e-2f, 1.5e-2f, 5e-4f, 8e-3f, 1.5e-3f, 2.5e-3f, 1e-1f, 2e-2f};
#if defined(ENABLE_FP32)
for (int i = 0; i < NUM_PARAMETER_TENSORS; i++) {
grad_thresholds[i] = 1e-6f; // we can be much more precise in FP32
}
#endif
allok = allok & check_tensor(tensors1[0], tensors2[0], V * C, "wte", grad_thresholds[0]);
allok = allok & check_tensor(tensors1[1], tensors2[1], maxT * C, "wpe", grad_thresholds[1]);
allok = allok & check_tensor(tensors1[2], tensors2[2], L * 3*C * C, "qkvw", grad_thresholds[2]);
allok = allok & check_tensor(tensors1[3], tensors2[3], L * 3*C, "qkvb", grad_thresholds[3]);
allok = allok & check_tensor(tensors1[4], tensors2[4], L * C * C, "attprojw", grad_thresholds[4]);
allok = allok & check_tensor(tensors1[5], tensors2[5], L * C, "attprojb", grad_thresholds[5]);
allok = allok & check_tensor(tensors1[6], tensors2[6], L * 4*C * C, "fcw", grad_thresholds[6]);
allok = allok & check_tensor(tensors1[7], tensors2[7], L * 4*C, "fcb", grad_thresholds[7]);
allok = allok & check_tensor(tensors1[8], tensors2[8], L * C * 4*C, "fcprojw", grad_thresholds[8]);
allok = allok & check_tensor(tensors1[9], tensors2[9], L * C, "fcprojb", grad_thresholds[9]);
allok = allok & check_tensor(tensors1[10], tensors2[10], L * C, "ln1w", grad_thresholds[10]);
allok = allok & check_tensor(tensors1[11], tensors2[11], L * C, "ln1b", grad_thresholds[11]);
allok = allok & check_tensor(tensors1[12], tensors2[12], L * C, "ln2w", grad_thresholds[12]);
allok = allok & check_tensor(tensors1[13], tensors2[13], L * C, "ln2b", grad_thresholds[13]);
allok = allok & check_tensor(tensors1[14], tensors2[14], C, "lnfw", grad_thresholds[14]);
allok = allok & check_tensor(tensors1[15], tensors2[15], C, "lnfb", grad_thresholds[15]);
}
float grad_norm = gpt2_calculate_grad_norm(&model, &multi_gpu_config);
float grad_scale = (grad_norm > 1.0f) ? 1.0f / grad_norm : 1.0f;
gpt2_update(&model, 1e-4f, 0.9f, 0.95f, 1e-8f, 0.0f, grad_scale, step+1, &multi_gpu_config);
// print the timing information at the end
printf("step %d: loss %f (took %f ms)\n", step+1, model.mean_loss, time_elapsed_s * 1000);
// the expected losses from PyTorch were copied over after the print formatting rounded
// them to 6 decimal places, so we do the same here
float rounded_loss = roundf(model.mean_loss * 1000000) / 1000000;
losses[step] = rounded_loss;
}
// expected losses are as follows, from Python
float expected_losses[10] = {
5.270009f,
4.060681f,
3.320085f,
2.717550f,
2.181066f,
1.653923f,
1.168050f,
0.736873f,
0.401021f,
0.187493f
};
// compare
for (int i = 0; i < 10; i++) {
if (fabsf(losses[i] - expected_losses[i]) >= loss_diff_threshold) {
printf("LOSS MISMATCH AT STEP %d: %f %f\n", i+1, losses[i], expected_losses[i]);
allok = 0;
} else {
printf("loss ok at step %d: %f %f\n", i+1, losses[i], expected_losses[i]);
}
}
// Finally, let's check determinism
gpt2_write_to_checkpoint(&model, "test_gpt2cu_model.ckpt");
DataLoader loader;
dataloader_init(&loader, "dev/data/tinyshakespeare/tiny_shakespeare_val.bin", B, T, multi_gpu_config.process_rank, multi_gpu_config.num_processes, 1);
save_state("test_gpt2cu_state.ckpt", 10, &model, &loader);
int tokens[10];
for (int step = 0; step < 10; step++) {
dataloader_next_batch(&loader);
gpt2_forward(&model, loader.inputs, B, T);
gpt2_backward_and_reduce(&model, loader.inputs, loader.targets, 1, 0);
gpt2_update(&model, 1e-4f, 0.9f, 0.95f, 1e-8f, 0.0f, 1.0f, step+11, &multi_gpu_config);
losses[step] = model.mean_loss;
tokens[step] = loader.inputs[0];
}
// reload
gpt2_free(&model);
gpt2_build_from_checkpoint(&model, "test_gpt2cu_model.ckpt");
int ld_step;
load_state(&ld_step, &model, &loader, "test_gpt2cu_state.ckpt");
for (int step = 0; step < 10; step++) {
dataloader_next_batch(&loader);
gpt2_forward(&model, loader.inputs, B, T);
gpt2_backward_and_reduce(&model, loader.inputs, loader.targets, 1, 0);
gpt2_update(&model, 1e-4f, 0.9f, 0.95f, 1e-8f, 0.0f, 1.0f, step+11, &multi_gpu_config);
if(loader.inputs[0] != tokens[step]) {
printf("Nondeterminism! Token mismatch at step %d: %d vs %d\n", step, tokens[step], loader.inputs[0]);
allok = false;
break;
}
if(losses[step] != model.mean_loss) {
printf("Nondeterminism! Loss mismatch at step %d: %.15f vs %.15f\n", step, losses[step], model.mean_loss);
allok = false;
break;
} else {
printf("loss ok at step %d: %f %f\n", step, losses[step], model.mean_loss);
}
}
// final approval
printf("overall okay: %d\n", allok);
// delete intermediate test files
remove("test_gpt2cu_model.ckpt");
remove("test_gpt2cu_state.ckpt");
// free everything
dataloader_free(&loader);
gpt2_free(&model);
common_free(model);
free(x);
free(y);
free(logits_cpu_raw);
free(logits_cpu);
free(expected_logits);
free(expected_loss);
free(expected_grads_memory);
free(grads_memory_cpu);
free(grads_memory_cpu_float);
return allok ? EXIT_SUCCESS : EXIT_FAILURE;
}