You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Currently, the first point cloud is randomly sampled from the ground-truth point cloud. And the second point cloud is rotated and translated from the first point cloud as indicated by the following line of code. These two point clouds have an exact one-to-one correspondence and the relative point distribution in each local neighborhood is exactly the same.
I have tried to randomly sample the second point cloud from the rotated and tranlated ground-truth point cloud, which is a more practical scenario since we should not expect the point clouds for registration have an exact one-to-one correspondence, and the performance decreases dramatically.
This issue should draw the attention of the authors: this issue in some degree indicates that the network may not learn to do the registration, but learn to recognize the relative local point distribution.
I also found this problem in another point cloud registration network. When using a rigid transformation network that is different from the training network during testing, the registration performance will decrease significantly, or even fail to register the point cloud. Have you found any reason for this
As far as I can tell, the ICP-based approach assumes one-to-one point correspondence, which seems to be the reason it doesn't extend to the scenario you mentioned. You can try a CpD-based approach.
Currently, the first point cloud is randomly sampled from the ground-truth point cloud. And the second point cloud is rotated and translated from the first point cloud as indicated by the following line of code. These two point clouds have an exact one-to-one correspondence and the relative point distribution in each local neighborhood is exactly the same.
I have tried to randomly sample the second point cloud from the rotated and tranlated ground-truth point cloud, which is a more practical scenario since we should not expect the point clouds for registration have an exact one-to-one correspondence, and the performance decreases dramatically.
This issue should draw the attention of the authors: this issue in some degree indicates that the network may not learn to do the registration, but learn to recognize the relative local point distribution.
dcp/data.py
Line 113 in bcd7def
The text was updated successfully, but these errors were encountered: