-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_mobilenet.py
98 lines (80 loc) · 3.96 KB
/
run_mobilenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import numpy as np
import os
# from utils import label_map_util
# from utils import visualization_utils as vis_util
import tensorflow as tf
import cv2 as cv
left = "/dev/v4l/by-path/platform-70090000.xusb-usb-0:2.1:1.0-video-index0"
# Define the video stream
cap = cv.VideoCapture(left) # Change only if you have more than one webcams
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_MODEL = 'models/mobilenet/optimized_model.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = 'models/mobilenet/data-inception-lionfish_lionfish_label_map.pbtxt'
# Number of classes to detect
NUM_CLASSES = 3
# Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.compat.v1.GraphDef()
with tf.io.gfile.GFile(PATH_TO_MODEL, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# # Loading label map
# # Label maps map indices to category names, so that when our convolution network predicts `5`, we know that this corresponds to `airplane`. Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine
# label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
# categories = label_map_util.convert_label_map_to_categories(
# label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
# category_index = label_map_util.create_category_index(categories)
# # Helper code
# def load_image_into_numpy_array(image):
# (im_width, im_height) = image.size
# return np.array(image.getdata()).reshape(
# (im_height, im_width, 3)).astype(np.uint8)
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
# Detection
with detection_graph.as_default():
with tf.compat.v1.Session(graph=detection_graph, config=config) as sess:
while True:
# Read frame from camera
ret, img = cap.read()
img = cv.resize(img, (300, 300))
image_np = np.asarray(img).astype('uint8')
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Extract image tensor
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Extract detection boxes
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Extract detection scores
scores = detection_graph.get_tensor_by_name('detection_scores:0')
# Extract detection classes
classes = detection_graph.get_tensor_by_name('detection_classes:0')
# Extract number of detectionsd
num_detections = detection_graph.get_tensor_by_name(
'num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
# vis_util.visualize_boxes_and_labels_on_image_array(
# image_np,
# np.squeeze(boxes),
# np.squeeze(classes).astype(np.int32),
# np.squeeze(scores),
# category_index,
# use_normalized_coordinates=True,
# line_thickness=8)
# Display output
cv.imshow('object detection', cv.resize(image_np, (800, 600)))
print(image_tensor)
print(boxes)
print(scores)
print(classes)
print(num_detections)
if cv.waitKey(25) & 0xFF == ord('q'):
cv.destroyAllWindows()
break