-
Notifications
You must be signed in to change notification settings - Fork 33
/
Strategy2_ROC_KC_UpDownTrend.py
521 lines (405 loc) · 26 KB
/
Strategy2_ROC_KC_UpDownTrend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
import backtrader as bt
from collections import defaultdict # для списков в словарях
import functions
import talib as ta
import numpy as np
import random
class NtimestrueOk(bt.Indicator):
lines = ('ntimestrue',)
params = dict(period=10)
plotinfo = dict(plot=True, subplot=True, plotname='Ntimestrue', )
def __init__(self):
self.l.ntimestrue = bt.indicators.AllN(self.data1, period=self.p.period)
class Ntimestrue(bt.Indicator):
lines = ('ntimestrue',)
params = dict(period=10)
plotinfo = dict(plot=True, subplot=True, plotname='Ntimestrue', )
def __init__(self):
#self.l.ntimestrue = bt.indicators.AllN(self.data, period=self.p.period)
pass
def next(self):
print("hi", self.data[0], self.data1[0]) # -200 => 1
if self.data1[0]:
self.l.ntimestrue[0] = 1.0
else:
self.l.ntimestrue[0] = 0.0
#self.l.ntimestrue[0] = random.randint(0, 1)
class And3(bt.Indicator):
lines = ('and3',)
params = dict(data2=1, data3=1)
plotinfo = dict(plot=True)
def __init__(self):
self.l.and3 = bt.And(self.data, self.p.data2, self.p.data3)
#self.l.and3 = bt.And(bt.And(self.data, self.p.data2), self.p.data3)
class OverUnder(bt.Indicator):
lines = ('overunder',)
params = dict(data2=20)
plotinfo = dict(plot=True)
def __init__(self):
self.l.overunder = self.data > self.p.data2 # данные над data2 == 1
class UnderOver(bt.Indicator):
lines = ('underover',)
params = dict(data2=20)
plotinfo = dict(plot=True)
def __init__(self):
self.l.underover = self.data < self.p.data2 # данные под data2 == 1
class UpDownTrend(bt.Indicator):
lines = ('trend',)
params = dict(period=20, )
plotinfo = dict(plot=True)
def __init__(self):
y1 = self.data
y2 = self.data(-self.p.period)
#self.l.trend = cond = bt.Cmp(y1, y2) # => 1 если y1 > y2 => 0 если y1 == y2 => -1 иначе
self.l.trend = cond = y1 > y2 # => 1 если y1 > y2
class KC(bt.Indicator):
lines = ('mid', 'top', 'bot',)
params = dict(multiplier=2.0, period=20, movav=bt.indicators.MovAv.EMA, atr=bt.indicators.AverageTrueRange, )
plotinfo = dict(subplot=False)
plotlines = dict(
mid=dict(ls='--'),
top=dict(_samecolor=False),
bot=dict(_samecolor=False),
)
def __init__(self):
self.lines.mid = ma = self.p.movav(self.data, period=self.p.period)
atr = self.p.atr(self.data, period=self.p.period)
stddev = self.p.multiplier * atr
self.lines.top = ma + stddev
self.lines.bot = ma - stddev
class OverUnderMovAv(bt.Indicator):
lines = ('overunder',)
params = dict(period=20, movav=bt.indicators.MovAv.EMA)
def __init__(self):
movav = self.p.movav(self.data, period=self.p.period)
self.l.overunder = bt.Cmp(self.data, movav) # данные над sma => 1
class OverUnderMovAvMovAv(bt.Indicator):
lines = ('overunder',)
params = dict(period=20, period2=25, movav=bt.indicators.MovAv.EMA)
def __init__(self):
movav = self.p.movav(self.data, period=self.p.period)
movav2 = self.p.movav(self.data, period=self.p.period2)
self.l.overunder = bt.Cmp(movav, movav2) # => 1 если EMA > EMA2
class Condition1(bt.Indicator):
lines = ('overunder',)
params = dict(period=20, period2=25, movav=bt.indicators.MovAv.EMA)
def __init__(self):
movav = self.p.movav(self.data, period=self.p.period)
movav2 = self.p.movav(self.data, period=self.p.period2)
cond1 = bt.Cmp(self.data, movav) # данные над sma => 1
cond2 = bt.Cmp(movav, movav2) # => 1 если EMA > EMA2
self.l.overunder = ((cond2 == 1) == cond1) # => 1 если cond2 == cond1 == 1
class TestStrategy01(bt.Strategy):
"""
- Отображает статус подключения
- При приходе нового бара отображает его цены/объем
- Отображает статус перехода к новым барам
"""
params = ( # Параметры торговой системы
('name', ''), # Название торговой системы
('symbols', ''), # Список торгуемых тикеров. По умолчанию торгуем все тикеры
('Percent', 20),
('lots', ''), # лоты
# ('my_log', ''), # лог
)
def __init__(self):
"""Инициализация торговой системы"""
self.isLive = False # Сначала будут приходить исторические данные
# To keep track of pending orders
self.order = None
self.orders = defaultdict(list)
self.dataclose = None
print(self.p.lots)
self.sma_all1 = defaultdict(list)
self.sma_all2 = defaultdict(list)
self.ema_all1 = defaultdict(list)
self.ema_all2 = defaultdict(list)
self.close_under_ema_all1 = defaultdict(list)
self.ema_all1_over_ema_all2 = defaultdict(list)
self.cond1 = defaultdict(list)
self.test1 = defaultdict(list)
self.macd = defaultdict(list)
self.bbands = defaultdict(list)
self.close_over_middle = defaultdict(list)
self.crossover = defaultdict(list)
self.crossover_80 = defaultdict(list)
self.crossover_20 = defaultdict(list)
self.crossover_DK = defaultdict(list)
self.stoch = defaultdict(list)
self.price_buy = defaultdict(list)
self.size_buy = defaultdict(list)
self.first_buy = defaultdict(list)
self.my_logs = []
self.ema_all1 = defaultdict(list)
self.ema_all2 = defaultdict(list)
self.close_under_ema_all10 = defaultdict(list)
self.roc = defaultdict(list)
self.kc = defaultdict(list)
self.trend = defaultdict(list)
self.roc_over_0 = defaultdict(list)
self.close_over_kc_top = defaultdict(list)
self.and3 = defaultdict(list)
self.enter_long = defaultdict(list)
self.close_long = defaultdict(list)
for i in range(len(self.datas)):
ticker = list(self.dnames.keys())[i] # key name is ticker name
self.ema_all1[ticker] = bt.indicators.ExponentialMovingAverage(self.datas[i], period=8)
# self.ema_all2[ticker] = bt.indicators.ExponentialMovingAverage(self.datas[i], period=16)
# self.close_under_ema_all10[ticker] = OverUnder(self.ema_all1[ticker].lines.ema, data2=self.ema_all2[ticker].lines.ema)
self.roc[ticker] = bt.indicators.RateOfChange100(self.datas[i], period=100)
self.kc[ticker] = KC(self.datas[i], period=200, multiplier=3.0)
self.trend[ticker] = UpDownTrend(self.kc[ticker].lines.top, period=20)
self.roc_over_0[ticker] = OverUnder(self.roc[ticker].lines.roc100, data2=0.0)
self.close_over_kc_top[ticker] = OverUnder(self.datas[i].close, data2=self.kc[ticker].lines.top)
self.and3[ticker] = And3(self.trend[ticker].lines.trend,
data2=self.roc_over_0[ticker].lines.overunder,
data3=self.close_over_kc_top[ticker].lines.overunder)
self.enter_long[ticker] = NtimestrueOk(self.datas[i], self.and3[ticker].lines.and3, period=10)
# self.enter_long[ticker] = bt.indicators.CrossUp(self.ema_all1[ticker].lines.ema,
# self.kc[ticker].lines.bot)
#self.close_long[ticker] = UnderOver(self.datas[i].close, data2=self.kc[ticker].lines.bot)
self.close_long[ticker] = UnderOver(self.ema_all1[ticker].lines.ema, data2=self.kc[ticker].lines.mid)
# self.close_long[ticker] = bt.indicators.CrossDown(self.ema_all1[ticker].lines.ema,
# self.kc[ticker].lines.top)
# self.sma_all1[ticker] = bt.indicators.SMA(self.datas[i], period=64)
# self.sma_all2[ticker] = bt.indicators.SMA(self.datas[i], period=128)
# self.ema_all1[ticker] = bt.indicators.ExponentialMovingAverage(self.datas[i], period=11)
# self.ema_all2[ticker] = bt.indicators.ExponentialMovingAverage(self.datas[i], period=30)
# #self.close_under_ema_all1[ticker] = bt.ind.Cmp(self.ema_all1[ticker], self.datas[i].close)
# self.close_under_ema_all1[ticker] = OverUnderMovAv(self.datas[i].close, period=21)
#
# self.ema_all1_over_ema_all2[ticker] = OverUnderMovAvMovAv(self.datas[i].close, period=11, period2=30)
#
# self.cond1[ticker] = Condition1(self.datas[i].close, period=21, period2=30)
#
# # self.test1[ticker] = ((self.ema_all1_over_ema_all2[ticker] == 1) == self.close_under_ema_all1[ticker])
#
# self.stoch[ticker] = bt.indicators.Stochastic(self.datas[i], period=21, period_dfast=7, period_dslow=7)
# self.crossover_80[ticker] = bt.ind.CrossOver(self.stoch[ticker].lines.percD, 80)
# self.crossover_20[ticker] = bt.ind.CrossOver(self.stoch[ticker].lines.percD, 20)
# self.crossover_DK[ticker] = bt.ind.CrossOver(self.stoch[ticker].lines.percD, self.stoch[ticker].lines.percK)
#
# self.macd[ticker] = bt.indicators.MACD(self.datas[i], period_me1=8, period_me2=16, period_signal=9)
# self.bbands[ticker] = bt.indicators.BollingerBands(self.datas[i], period=20)
# self.close_over_middle[ticker] = OverUnder(self.datas[i].close, data2=self.bbands[ticker].lines.mid)
# self.crossover[ticker] = bt.ind.CrossOver(self.ema_all1[ticker], self.ema_all2[ticker])
# #self.crossover[ticker] = bt.ind.UpDayBool(self.sma_all1[ticker], self.sma_all2[ticker])
def log(self, txt, dt=None):
"""Вывод строки с датой на консоль"""
dt = bt.num2date(
self.datas[0].datetime[0]) if dt is None else dt # Заданная дата или дата последнего бара первого тикера ТС
print(f'{dt.strftime("%d.%m.%Y %H:%M")}, {txt}') # Выводим дату и время с заданным текстом на консоль
def log_csv(self, ticker=None, signal=None, signal_price=None, order=None, order_price=None,
size=None, status=None, cost=None, comm=None, amount=None, pnl=None, dt=None):
"""Собираем логи для csv файла"""
tradedate = bt.num2date(self.datas[0].datetime[0]) if dt is None else dt # Заданная дата или дата последнего бара первого тикера ТС
depo = f"{self.cerebro.broker.get_cash():.2f}"
amount = f"{(self.cerebro.broker.get_value()):.2f}" # - (self.cerebro.broker.get_cash()):.2f}"
strategy_name = self.p.name
info = ""
if order == "BUY" and float(cost) < 0: info = "Warning"
self.my_logs.append([tradedate, ticker, signal, signal_price, order, order_price, size, status,
cost, comm, pnl, amount, depo, strategy_name, info])
def next(self):
"""
Приход нового бара тикера
"""
if self.p.name != '': # Если указали название торговой системы, то будем ждать прихода всех баров
lastdatetimes = [bt.num2date(data.datetime[0]) for data in self.datas] # Дата и время последнего бара каждого тикера
if lastdatetimes.count(lastdatetimes[0]) != len(lastdatetimes): # Если дата и время последних баров не идентичны
return # то еще не пришли все новые бары. Ждем дальше, выходим
#print(self.p.name)
for data in self.datas: # Пробегаемся по всем запрошенным тикерам
ticker = data._dataname
if self.p.symbols == '' or ticker in self.p.symbols: # Если торгуем все тикеры или данный тикер
self.log(f'{ticker} - {bt.TimeFrame.Names[data.p.timeframe]} {data.p.compression} - Open={data.open[0]:.2f}, High={data.high[0]:.2f}, Low={data.low[0]:.2f}, Close={data.close[0]:.2f}, Volume={data.volume[0]:.0f}',
bt.num2date(data.datetime[0]))
_close = data.close[0] # текущий close
_low = data.low[0] # текущий low
_high = data.high[0] # текущий high
_open = data.open[0]
_oc2 = (_open + _close) / 2
_volume = data.volume # ссылка на Объемы # print(volume[0])
#print(bool(self.trend[ticker]), bool(self.close_over_kc_top[ticker]), bool(self.roc_over_0[ticker]), bool(self.and3[ticker]))
print(bool(self.enter_long[ticker]))
#print(bool(self.cond1[ticker]), bool(self.test1[ticker]), self.cond1[ticker] == self.test1[ticker])
#if self.cond1[ticker] != self.test1[ticker]: print("ERROR***")
# # https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
# # pip install TA_Lib-0.4.24-cp39-cp39-win_amd64.whl
# _ticker = ticker
# _current_close = data.close[0]
# _idx = data.line.idx
# _dd = data.close.array
# _kk = np.array(_dd)
# # print(_dd, _kk)
# _sma1 = ta.SMA(_kk, timeperiod=50); _sma2 = ta.SMA(_kk, timeperiod=100)
# print("[", ticker, _sma1[_idx], _sma2[_idx], "]")
# условие на покупку
if not self.orders[ticker]:
if self.enter_long[ticker]: #
lot = self.p.lots[ticker]
percent = 3 # сколько % от депозита использовать на сделку
depo = self.cerebro.broker.get_cash()
ticker_price = _close
size = functions.calc_size(depo=depo, lot=lot, percent=percent, ticker_price=ticker_price)
self.log(f"BUY CREATE [{ticker}] {self.data.close[0]:.2f}")
self.log_csv(ticker=ticker, signal='BUY', signal_price=_close, size=size)
if type(self.first_buy[ticker]) == list:
self.first_buy[ticker] = True
self.buy(data=data, exectype=bt.Order.Market, size=size)
# if not self.first_buy[ticker]:
# self.buy(data=data, exectype=bt.Order.Market, size=size)
self.first_buy[ticker] = False
self.orders[ticker] = True
profit_percent = 1
ratio_profit = 5 # 1/3 => 1%*3=3%
stop_loss_percent = 5
# условие на продажу
if self.orders[ticker] and self.price_buy[ticker]:
# print(f"_close={_close} self.price_buy[ticker]={self.price_buy[ticker]} take_profit={self.price_buy[ticker]*(1+profit_percent*ratio_profit/100)} stop-loss={self.price_buy[ticker]*(1-profit_percent/100)}")
size = self.size_buy[ticker]
# условие на продажу stop-loss %
if _close <= self.price_buy[ticker] * (1 - stop_loss_percent / 100):
self.log(f"SELL STOP LOSS CREATE [{ticker}] {self.data.close[0]:.2f}")
self.log_csv(ticker=ticker, signal='STOP LOSS', signal_price=_close, size=size)
self.sell(data=data, exectype=bt.Order.Market, size=size)
self.orders[ticker] = False
self.first_buy[ticker] = True
# условие на продажу take-profit
if self.close_long[ticker] and self.orders[ticker]: #
self.log(f"SELL CREATE [{ticker}] {self.data.close[0]:.2f}")
self.log_csv(ticker=ticker, signal='SELL', signal_price=_close, size=size)
self.sell(data=data, exectype=bt.Order.Market, size=size)
#self.sell(data=data, exectype=bt.Order.Market, size=size)
self.orders[ticker] = False
# if _close>=self.price_buy[ticker]*(1+profit_percent*ratio_profit/100):
# self.log(f"SELL TAKE PROFIT CREATE [{ticker}] {self.data.close[0]:.2f}")
# self.sell(data=data, exectype=bt.Order.Market, size=size)
# self.orders[ticker] = False
# ==========================================================================================================================
# # условие на покупку
# if not self.orders[ticker]:
# if self.sma_all1[ticker] > self.sma_all2[ticker]:
# #print(self.bbands[ticker].lines.top, self.bbands[ticker].lines.mid, self.bbands[ticker].lines.bot)
# self.log(f"BUY CREATE [{ticker}] {self.data.close[0]:.2f}")
# self.buy(data=data, exectype=bt.Order.Market) # , size=size)
# self.orders[ticker] = True
#
# # условие на продажу
# if self.orders[ticker]:
# if self.sma_all1[ticker] < self.sma_all2[ticker]:
# self.log(f"SELL CREATE [{ticker}] {self.data.close[0]:.2f}")
# self.sell(data=data, exectype=bt.Order.Market) # , size=size)
# self.orders[ticker] = False
# # ==========================================================================================================================
# # условие на покупку
# if not self.orders[ticker]:
# if self.sma_all1[ticker] > self.sma_all2[ticker]:
# #print(self.bbands[ticker].lines.top, self.bbands[ticker].lines.mid, self.bbands[ticker].lines.bot)
#
# lot = self.p.lots[ticker]
# percent = 3 # сколько % от депозита использовать на сделку
# depo = self.cerebro.broker.get_cash()
# ticker_price = _close
#
# size = functions.calc_size(depo=depo, lot=lot, percent=percent, ticker_price=ticker_price)
#
# self.log(f"BUY CREATE [{ticker}] {self.data.close[0]:.2f}")
# self.log_csv(ticker=ticker, signal='BUY', signal_price=_close, size=size)
# self.buy(data=data, exectype=bt.Order.Market, size=size)
# self.orders[ticker] = True
#
# profit_percent = 1
# ratio_profit = 5 # 1/3 => 1%*3=3%
# stop_loss_percent = 1
# # условие на продажу
# if self.orders[ticker] and self.price_buy[ticker]:
# # print(f"_close={_close} self.price_buy[ticker]={self.price_buy[ticker]} take_profit={self.price_buy[ticker]*(1+profit_percent*ratio_profit/100)} stop-loss={self.price_buy[ticker]*(1-profit_percent/100)}")
# size = self.size_buy[ticker]
# # условие на продажу stop-loss %
# if _close <= self.price_buy[ticker] * (1 - stop_loss_percent / 100):
# self.log(f"SELL STOP LOSS CREATE [{ticker}] {self.data.close[0]:.2f}")
# self.log_csv(ticker=ticker, signal='STOP LOSS', signal_price=_close, size=size)
# self.sell(data=data, exectype=bt.Order.Market, size=size)
# self.orders[ticker] = False
# # условие на продажу take-profit
# elif self.sma_all1[ticker] < self.sma_all2[ticker]:
# self.log(f"SELL CREATE [{ticker}] {self.data.close[0]:.2f}")
# self.log_csv(ticker=ticker, signal='SELL', signal_price=_close, size=size)
# self.sell(data=data, exectype=bt.Order.Market, size=size)
# self.orders[ticker] = False
# # if _close>=self.price_buy[ticker]*(1+profit_percent*ratio_profit/100):
# # self.log(f"SELL TAKE PROFIT CREATE [{ticker}] {self.data.close[0]:.2f}")
# # self.sell(data=data, exectype=bt.Order.Market, size=size)
# # self.orders[ticker] = False
#
# # ==========================================================================================================================
# if not self.orders[ticker]:
# if self.sma_all1[ticker] > self.sma_all2[ticker]:
# #print(self.bbands[ticker].lines.top, self.bbands[ticker].lines.mid, self.bbands[ticker].lines.bot)
# self.log(f"BUY CREATE [{ticker}] {self.data.close[0]:.2f}")
# self.buy(data=data, exectype=bt.Order.Market) # , size=size)
# self.orders[ticker] = True
# if not self.orders[ticker]:
# if random.randint(0, 10) > 8:
# #print(self.bbands[ticker].lines.top, self.bbands[ticker].lines.mid, self.bbands[ticker].lines.bot)
# self.log(f"BUY CREATE [{ticker}] {self.data.close[0]:.2f}")
# self.buy(data=data, exectype=bt.Order.Market) # , size=size)
# self.orders[ticker] = True
#
# if self.orders[ticker]:
# if _close < self.bbands[ticker].lines.mid:
# self.log(f"SELL CREATE [{ticker}] {self.data.close[0]:.2f}")
# self.sell(data=data, exectype=bt.Order.Market) # , size=size)
# self.orders[ticker] = False
# if not self.orders[ticker]:
# if self.sma_all1[ticker] > self.sma_all2[ticker]:
# #print(self.bbands[ticker].lines.top, self.bbands[ticker].lines.mid, self.bbands[ticker].lines.bot)
# self.log(f"BUY CREATE [{ticker}] {self.data.close[0]:.2f}")
# self.buy(data=data, exectype=bt.Order.Market) # , size=size)
# self.orders[ticker] = True
#
# if self.orders[ticker]:
# if self.sma_all1[ticker] < self.sma_all2[ticker]:
# self.log(f"SELL CREATE [{ticker}] {self.data.close[0]:.2f}")
# self.sell(data=data, exectype=bt.Order.Market) # , size=size)
# self.orders[ticker] = False
def notify_trade(self, trade):
if not trade.isclosed:
return
self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' %
(trade.pnl, trade.pnlcomm))
def notify_order(self, order):
ticker = order.data._name
size = order.size
if order.status in [order.Submitted, order.Accepted]:
# Buy/Sell order submitted/accepted to/by broker - Nothing to do
return
# Check if an order has been completed
# Attention: broker could reject order if not enough cash
if order.status in [order.Completed]:
if order.isbuy():
self.log(f"BUY EXECUTED [{order.data._name}], {order.executed.price:.2f} size={size}")
self.log_csv(ticker=ticker, order='BUY', order_price=order.executed.price, size=size,
status=order.getstatusname(order.status), cost=f"{order.executed.value:.2f}",
comm=f"{order.executed.comm:.2f}")
self.price_buy[ticker] = order.executed.price # записываем цену покупки для тикера
self.size_buy[ticker] = size # записываем объем покупки для тикера
elif order.issell():
self.log(f"SELL EXECUTED [{order.data._name}], {order.executed.price:.2f} size={size}")
self.log_csv(ticker=ticker, order='SELL', order_price=order.executed.price, size=size,
status=order.getstatusname(order.status),
cost=f"{order.executed.value + order.executed.pnl:.2f}",
comm=f"{order.executed.comm:.2f}", pnl=f"{order.executed.pnl:.2f}")
self.price_buy.pop(ticker, None) # удаляем цену покупки для тикера
self.size_buy.pop(ticker, None) # удаляем объем покупки для тикера
self.bar_executed = len(self)
elif order.status in [order.Canceled, order.Margin, order.Rejected]:
self.log('Order Canceled/Margin/Rejected')
# Write down: no pending order
self.order = None
def notify_data(self, data, status, *args, **kwargs):
"""Изменение статсуса приходящих баров"""
dataStatus = data._getstatusname(status) # Получаем статус (только при LiveBars=True)
print(f'{data._dataname} - {dataStatus}') # Статус приходит для каждого тикера отдельно
self.isLive = dataStatus == 'LIVE' # В Live режим переходим после перехода первого тикера