-
Notifications
You must be signed in to change notification settings - Fork 175
/
pspnet-video.py
351 lines (287 loc) · 14.8 KB
/
pspnet-video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
#!/usr/bin/env python
"""
This module is a Keras/Tensorflow based implementation of Pyramid Scene Parsing Networks.
Original paper & code published by Hengshuang Zhao et al. (2017)
"""
from __future__ import print_function
from __future__ import division
from os.path import splitext, join, isfile
from os import environ
from math import ceil
import argparse
import numpy as np
from scipy import misc, ndimage
from keras import backend as K
from keras.models import model_from_json
import tensorflow as tf
import layers_builder as layers
from utils import utils
import matplotlib.pyplot as plt
import cv2
import datetime
from tensorflow.python.client import device_lib
__author__ = "Vlad Kryvoruchko, Chaoyue Wang, Jeffrey Hu & Julian Tatsch"
# These are the means for the ImageNet pretrained ResNet
DATA_MEAN = np.array([[[123.68, 116.779, 103.939]]]) # RGB order
EVALUATION_SCALES = [1.0] # must be all floats!
def getGPUname():
local_device_protos = device_lib.list_local_devices()
l = [x.physical_device_desc for x in local_device_protos if x.device_type == 'GPU']
s=''
for t in l:
s+=t[t.find("name: ")+len("name: "):t.find(", pci")] + " "
return s
GPU_NAME = getGPUname()
class PSPNet(object):
"""Pyramid Scene Parsing Network by Hengshuang Zhao et al 2017."""
def __init__(self, nb_classes, resnet_layers, input_shape, weights):
"""Instanciate a PSPNet."""
self.input_shape = input_shape
json_path = join("weights", "keras", weights + ".json")
h5_path = join("weights", "keras", weights + ".h5")
if isfile(json_path) and isfile(h5_path):
print("Keras model & weights found, loading...")
with open(json_path, 'r') as file_handle:
self.model = model_from_json(file_handle.read())
self.model.load_weights(h5_path)
else:
print("No Keras model & weights found, import from npy weights.")
self.model = layers.build_pspnet(nb_classes=nb_classes,
resnet_layers=resnet_layers,
input_shape=self.input_shape)
self.set_npy_weights(weights)
def predict(self, img, flip_evaluation):
"""
Predict segementation for an image.
Arguments:
img: must be rowsxcolsx3
"""
h_ori, w_ori = img.shape[:2]
if img.shape[0:2] != self.input_shape:
# print("Input %s not fitting for network size %s, resizing. You may want to try sliding prediction for better results." % (img.shape[0:2], self.input_shape))
img = misc.imresize(img, self.input_shape)
input_data = self.preprocess_image(img)
# utils.debug(self.model, input_data)
regular_prediction = self.model.predict(input_data)[0]
if flip_evaluation:
print("Predict flipped")
flipped_prediction = np.fliplr(self.model.predict(np.flip(input_data, axis=2))[0])
prediction = (regular_prediction + flipped_prediction) / 2.0
else:
prediction = regular_prediction
if img.shape[0:1] != self.input_shape: # upscale prediction if necessary
h, w = prediction.shape[:2]
# prediction = ndimage.zoom(prediction, (1.*h_ori/h, 1.*w_ori/w, 1.), order=1, prefilter=False)
prediction = cv2.resize(prediction,(w_ori,h_ori))
return prediction
def preprocess_image(self, img):
"""Preprocess an image as input."""
float_img = img.astype('float16')
centered_image = float_img - DATA_MEAN
bgr_image = centered_image[:, :, ::-1] # RGB => BGR
input_data = bgr_image[np.newaxis, :, :, :] # Append sample dimension for keras
return input_data
def set_npy_weights(self, weights_path):
"""Set weights from the intermediary npy file."""
npy_weights_path = join("weights", "npy", weights_path + ".npy")
json_path = join("weights", "keras", weights_path + ".json")
h5_path = join("weights", "keras", weights_path + ".h5")
print("Importing weights from %s" % npy_weights_path)
weights = np.load(npy_weights_path, encoding="latin1").item()
whitelist = ["InputLayer", "Activation", "ZeroPadding2D", "Add", "MaxPooling2D", "AveragePooling2D", "Lambda", "Concatenate", "Dropout"]
weights_set = 0
for layer in self.model.layers:
print("Processing %s" % layer.name)
if layer.name[:4] == 'conv' and layer.name[-2:] == 'bn':
mean = weights[layer.name]['mean'].reshape(-1)
variance = weights[layer.name]['variance'].reshape(-1)
scale = weights[layer.name]['scale'].reshape(-1)
offset = weights[layer.name]['offset'].reshape(-1)
self.model.get_layer(layer.name).set_weights([mean, variance,
scale, offset])
weights_set += 1
elif layer.name[:4] == 'conv' and not layer.name[-4:] == 'relu':
try:
weight = weights[layer.name]['weights']
self.model.get_layer(layer.name).set_weights([weight])
except Exception:
biases = weights[layer.name]['biases']
self.model.get_layer(layer.name).set_weights([weight,
biases])
weights_set += 1
elif layer.__class__.__name__ in whitelist:
# print("Nothing to set in %s" % layer.__class__.__name__)
pass
else:
print("Warning: Did not find weights for keras layer %s in numpy weights" % layer)
print("Set a total of %i weights" % weights_set)
print('Finished importing weights.')
print("Writing keras model & weights")
json_string = self.model.to_json()
with open(json_path, 'w') as file_handle:
file_handle.write(json_string)
self.model.save_weights(h5_path)
print("Finished writing Keras model & weights")
class PSPNet50(PSPNet):
"""Build a PSPNet based on a 50-Layer ResNet."""
def __init__(self, nb_classes, weights, input_shape):
"""Instanciate a PSPNet50."""
PSPNet.__init__(self, nb_classes=nb_classes, resnet_layers=50,
input_shape=input_shape, weights=weights)
class PSPNet101(PSPNet):
"""Build a PSPNet based on a 101-Layer ResNet."""
def __init__(self, nb_classes, weights, input_shape):
"""Instanciate a PSPNet101."""
PSPNet.__init__(self, nb_classes=nb_classes, resnet_layers=101,
input_shape=input_shape, weights=weights)
def pad_image(img, target_size):
"""Pad an image up to the target size."""
rows_missing = target_size[0] - img.shape[0]
cols_missing = target_size[1] - img.shape[1]
padded_img = np.pad(img, ((0, rows_missing), (0, cols_missing), (0, 0)), 'constant')
return padded_img
def visualize_prediction(prediction):
"""Visualize prediction."""
cm = np.argmax(prediction, axis=2) + 1
color_cm = utils.add_color(cm)
plt.imshow(color_cm)
plt.show()
def predict_sliding(full_image, net, flip_evaluation):
"""Predict on tiles of exactly the network input shape so nothing gets squeezed."""
tile_size = net.input_shape
classes = net.model.outputs[0].shape[3]
overlap = 1/3
stride = ceil(tile_size[0] * (1 - overlap))
tile_rows = int(ceil((full_image.shape[0] - tile_size[0]) / stride) + 1) # strided convolution formula
tile_cols = int(ceil((full_image.shape[1] - tile_size[1]) / stride) + 1)
print("Need %i x %i prediction tiles @ stride %i px" % (tile_cols, tile_rows, stride))
full_probs = np.zeros((full_image.shape[0], full_image.shape[1], classes))
count_predictions = np.zeros((full_image.shape[0], full_image.shape[1], classes))
tile_counter = 0
for row in range(tile_rows):
for col in range(tile_cols):
x1 = int(col * stride)
y1 = int(row * stride)
x2 = min(x1 + tile_size[1], full_image.shape[1])
y2 = min(y1 + tile_size[0], full_image.shape[0])
x1 = max(int(x2 - tile_size[1]), 0) # for portrait images the x1 underflows sometimes
y1 = max(int(y2 - tile_size[0]), 0) # for very few rows y1 underflows
img = full_image[y1:y2, x1:x2]
padded_img = pad_image(img, tile_size)
# plt.imshow(padded_img)
# plt.show()
tile_counter += 1
print("Predicting tile %i" % tile_counter)
padded_prediction = net.predict(padded_img, flip_evaluation)
prediction = padded_prediction[0:img.shape[0], 0:img.shape[1], :]
count_predictions[y1:y2, x1:x2] += 1
full_probs[y1:y2, x1:x2] += prediction # accumulate the predictions also in the overlapping regions
# average the predictions in the overlapping regions
full_probs /= count_predictions
# visualize normalization Weights
# plt.imshow(np.mean(count_predictions, axis=2))
# plt.show()
return full_probs
def predict_multi_scale(full_image, net, scales, sliding_evaluation, flip_evaluation):
"""Predict an image by looking at it with different scales."""
classes = net.model.outputs[0].shape[3]
full_probs = np.zeros((full_image.shape[0], full_image.shape[1], classes))
h_ori, w_ori = full_image.shape[:2]
for scale in scales:
print("Predicting image scaled by %f" % scale)
scaled_img = misc.imresize(full_image, size=scale, interp="bilinear")
if sliding_evaluation:
scaled_probs = predict_sliding(scaled_img, net, flip_evaluation)
else:
scaled_probs = net.predict(scaled_img, flip_evaluation)
# scale probs up to full size
h, w = scaled_probs.shape[:2]
probs = ndimage.zoom(scaled_probs, (1.*h_ori/h, 1.*w_ori/w, 1.),order=1, prefilter=False)
# visualize_prediction(probs)
# integrate probs over all scales
full_probs += probs
full_probs /= len(scales)
return full_probs
def _predict(full_image, net, flip_evaluation):
classes = net.model.outputs[0].shape[3]
full_probs = np.zeros((full_image.shape[0], full_image.shape[1], classes))
h_ori, w_ori = full_image.shape[:2]
scaled_probs = net.predict(full_image, flip_evaluation)
# scale probs up to full size
h, w = scaled_probs.shape[:2]
probs = cv2.resize(scaled_probs,(w_ori,h_ori))
# visualize_prediction(probs)
# integrate probs over all scales
full_probs += probs
return full_probs
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-m', '--model', type=str, default='pspnet50_ade20k',
help='Model/Weights to use',
choices=['pspnet50_ade20k',
'pspnet101_cityscapes',
'pspnet101_voc2012'])
parser.add_argument('-i', '--input_path', type=str, default='example_images/ade20k.jpg',
help='Path the input image')
parser.add_argument('-o', '--output_path', type=str, default='example_results/ade20k.jpg',
help='Path to output')
parser.add_argument('--id', default="1")
parser.add_argument('-s', '--sliding', action='store_true',
help="Whether the network should be slided over the original image for prediction.")
parser.add_argument('-f', '--flip', action='store_true',
help="Whether the network should predict on both image and flipped image.")
parser.add_argument('-ms', '--multi_scale', action='store_true',
help="Whether the network should predict on multiple scales.")
args = parser.parse_args()
# environ["CUDA_VISIBLE_DEVICES"] = args.id
sess = tf.Session()
K.set_session(sess)
with sess.as_default():
cap = cv2.VideoCapture(args.input_path)
print(args)
counter = 0
if "pspnet50" in args.model:
pspnet = PSPNet50(nb_classes=150, input_shape=(473, 473),
weights=args.model)
elif "pspnet101" in args.model:
if "cityscapes" in args.model:
pspnet = PSPNet101(nb_classes=19, input_shape=(713, 713),
weights=args.model)
if "voc2012" in args.model:
pspnet = PSPNet101(nb_classes=21, input_shape=(473, 473),
weights=args.model)
else:
print("Network architecture not implemented.")
if args.multi_scale:
EVALUATION_SCALES = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75] # must be all floats!
EVALUATION_SCALES = [0.15, 0.25, 0.5] # must be all floats!
time_sum = 0
while(True):
# Capture frame-by-frame
ret, img = cap.read()
if img is None:
break
# img = cv2.resize(img,(int(16.0*713/9.0),713))
img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
start = datetime.datetime.now()
# class_scores = predict_multi_scale(img, pspnet, EVALUATION_SCALES, args.sliding, args.flip)
class_scores = _predict(img, pspnet, args.flip)
# End time
end = datetime.datetime.now()
# Time elapsed
diff = end - start
class_image = np.argmax(class_scores, axis=2)
pm = np.max(class_scores, axis=2)
colored_class_image = utils.color_class_image(class_image, args.model)
alpha_blended = 0.5 * colored_class_image + 0.5 * img
filename, ext = splitext(args.output_path)
time_sum += diff.microseconds/1000.0
print(counter,diff.microseconds/1000.0,'ms')
cv2.putText(alpha_blended,'%s %s'%(GPU_NAME,args.model),(100,100), cv2.FONT_HERSHEY_SIMPLEX, 3,(0,0,0),16,cv2.LINE_AA)
cv2.putText(alpha_blended,'%s %s'%(GPU_NAME,args.model),(100,100), cv2.FONT_HERSHEY_SIMPLEX, 3,(255,255,255),10,cv2.LINE_AA)
cv2.putText(alpha_blended,'Prediction time: %.0fms (%.1f fps) AVG: %.0fms (%.1f fps)'%(diff.microseconds/1000.0,1000000.0/diff.microseconds,time_sum/(counter+1),1000.0/(time_sum/(counter+1))),(100,200), cv2.FONT_HERSHEY_SIMPLEX, 3,(0,0,0),16,cv2.LINE_AA)
cv2.putText(alpha_blended,'Prediction time: %.0fms (%.1f fps) AVG: %.0fms (%.1f fps)'%(diff.microseconds/1000.0,1000000.0/diff.microseconds,time_sum/(counter+1),1000.0/(time_sum/(counter+1))),(100,200), cv2.FONT_HERSHEY_SIMPLEX, 3,(255,255,255),10,cv2.LINE_AA)
misc.imsave(filename + "_%08d_seg"%counter + ext, colored_class_image)
misc.imsave(filename + "_%08d_probs"%counter + ext, pm)
misc.imsave(filename + "_%08d_seg_blended"%counter + ext, alpha_blended)
counter = counter + 1