-
Notifications
You must be signed in to change notification settings - Fork 175
/
layers_builder.py
278 lines (221 loc) · 9.84 KB
/
layers_builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
from __future__ import print_function
from math import ceil
from keras import layers
from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D
from keras.layers import BatchNormalization, Activation, Input, Dropout, ZeroPadding2D, Lambda
from keras.layers.merge import Concatenate, Add
from keras.models import Model
from keras.optimizers import SGD
from keras.backend import tf as ktf
import tensorflow as tf
learning_rate = 1e-3 # Layer specific learning rate
# Weight decay not implemented
def BN(name=""):
return BatchNormalization(momentum=0.95, name=name, epsilon=1e-5)
class Interp(layers.Layer):
def __init__(self, new_size, **kwargs):
self.new_size = new_size
super(Interp, self).__init__(**kwargs)
def build(self, input_shape):
super(Interp, self).build(input_shape)
def call(self, inputs, **kwargs):
new_height, new_width = self.new_size
resized = ktf.image.resize_images(inputs, [new_height, new_width],
align_corners=True)
return resized
def compute_output_shape(self, input_shape):
return tuple([None, self.new_size[0], self.new_size[1], input_shape[3]])
def get_config(self):
config = super(Interp, self).get_config()
config['new_size'] = self.new_size
return config
# def Interp(x, shape):
# new_height, new_width = shape
# resized = ktf.image.resize_images(x, [new_height, new_width],
# align_corners=True)
# return resized
def residual_conv(prev, level, pad=1, lvl=1, sub_lvl=1, modify_stride=False):
lvl = str(lvl)
sub_lvl = str(sub_lvl)
names = ["conv" + lvl + "_" + sub_lvl + "_1x1_reduce",
"conv" + lvl + "_" + sub_lvl + "_1x1_reduce_bn",
"conv" + lvl + "_" + sub_lvl + "_3x3",
"conv" + lvl + "_" + sub_lvl + "_3x3_bn",
"conv" + lvl + "_" + sub_lvl + "_1x1_increase",
"conv" + lvl + "_" + sub_lvl + "_1x1_increase_bn"]
if modify_stride is False:
prev = Conv2D(64 * level, (1, 1), strides=(1, 1), name=names[0],
use_bias=False)(prev)
elif modify_stride is True:
prev = Conv2D(64 * level, (1, 1), strides=(2, 2), name=names[0],
use_bias=False)(prev)
prev = BN(name=names[1])(prev)
prev = Activation('relu')(prev)
prev = ZeroPadding2D(padding=(pad, pad))(prev)
prev = Conv2D(64 * level, (3, 3), strides=(1, 1), dilation_rate=pad,
name=names[2], use_bias=False)(prev)
prev = BN(name=names[3])(prev)
prev = Activation('relu')(prev)
prev = Conv2D(256 * level, (1, 1), strides=(1, 1), name=names[4],
use_bias=False)(prev)
prev = BN(name=names[5])(prev)
return prev
def short_convolution_branch(prev, level, lvl=1, sub_lvl=1, modify_stride=False):
lvl = str(lvl)
sub_lvl = str(sub_lvl)
names = ["conv" + lvl + "_" + sub_lvl + "_1x1_proj",
"conv" + lvl + "_" + sub_lvl + "_1x1_proj_bn"]
if modify_stride is False:
prev = Conv2D(256 * level, (1, 1), strides=(1, 1), name=names[0],
use_bias=False)(prev)
elif modify_stride is True:
prev = Conv2D(256 * level, (1, 1), strides=(2, 2), name=names[0],
use_bias=False)(prev)
prev = BN(name=names[1])(prev)
return prev
def empty_branch(prev):
return prev
def residual_short(prev_layer, level, pad=1, lvl=1, sub_lvl=1, modify_stride=False):
prev_layer = Activation('relu')(prev_layer)
block_1 = residual_conv(prev_layer, level,
pad=pad, lvl=lvl, sub_lvl=sub_lvl,
modify_stride=modify_stride)
block_2 = short_convolution_branch(prev_layer, level,
lvl=lvl, sub_lvl=sub_lvl,
modify_stride=modify_stride)
added = Add()([block_1, block_2])
return added
def residual_empty(prev_layer, level, pad=1, lvl=1, sub_lvl=1):
prev_layer = Activation('relu')(prev_layer)
block_1 = residual_conv(prev_layer, level, pad=pad,
lvl=lvl, sub_lvl=sub_lvl)
block_2 = empty_branch(prev_layer)
added = Add()([block_1, block_2])
return added
def ResNet(inp, layers):
# Names for the first couple layers of model
names = ["conv1_1_3x3_s2",
"conv1_1_3x3_s2_bn",
"conv1_2_3x3",
"conv1_2_3x3_bn",
"conv1_3_3x3",
"conv1_3_3x3_bn"]
# Short branch(only start of network)
cnv1 = Conv2D(64, (3, 3), strides=(2, 2), padding='same', name=names[0],
use_bias=False)(inp) # "conv1_1_3x3_s2"
bn1 = BN(name=names[1])(cnv1) # "conv1_1_3x3_s2/bn"
relu1 = Activation('relu')(bn1) # "conv1_1_3x3_s2/relu"
cnv1 = Conv2D(64, (3, 3), strides=(1, 1), padding='same', name=names[2],
use_bias=False)(relu1) # "conv1_2_3x3"
bn1 = BN(name=names[3])(cnv1) # "conv1_2_3x3/bn"
relu1 = Activation('relu')(bn1) # "conv1_2_3x3/relu"
cnv1 = Conv2D(128, (3, 3), strides=(1, 1), padding='same', name=names[4],
use_bias=False)(relu1) # "conv1_3_3x3"
bn1 = BN(name=names[5])(cnv1) # "conv1_3_3x3/bn"
relu1 = Activation('relu')(bn1) # "conv1_3_3x3/relu"
res = MaxPooling2D(pool_size=(3, 3), padding='same',
strides=(2, 2))(relu1) # "pool1_3x3_s2"
# ---Residual layers(body of network)
"""
Modify_stride --Used only once in first 3_1 convolutions block.
changes stride of first convolution from 1 -> 2
"""
# 2_1- 2_3
res = residual_short(res, 1, pad=1, lvl=2, sub_lvl=1)
for i in range(2):
res = residual_empty(res, 1, pad=1, lvl=2, sub_lvl=i + 2)
# 3_1 - 3_3
res = residual_short(res, 2, pad=1, lvl=3, sub_lvl=1, modify_stride=True)
for i in range(3):
res = residual_empty(res, 2, pad=1, lvl=3, sub_lvl=i + 2)
if layers is 50:
# 4_1 - 4_6
res = residual_short(res, 4, pad=2, lvl=4, sub_lvl=1)
for i in range(5):
res = residual_empty(res, 4, pad=2, lvl=4, sub_lvl=i + 2)
elif layers is 101:
# 4_1 - 4_23
res = residual_short(res, 4, pad=2, lvl=4, sub_lvl=1)
for i in range(22):
res = residual_empty(res, 4, pad=2, lvl=4, sub_lvl=i + 2)
else:
print("This ResNet is not implemented")
# 5_1 - 5_3
res = residual_short(res, 8, pad=4, lvl=5, sub_lvl=1)
for i in range(2):
res = residual_empty(res, 8, pad=4, lvl=5, sub_lvl=i + 2)
res = Activation('relu')(res)
return res
def interp_block(prev_layer, level, feature_map_shape, input_shape):
if input_shape == (473, 473):
kernel_strides_map = {1: 60,
2: 30,
3: 20,
6: 10}
elif input_shape == (713, 713):
kernel_strides_map = {1: 90,
2: 45,
3: 30,
6: 15}
else:
print("Pooling parameters for input shape ",
input_shape, " are not defined.")
exit(1)
names = [
"conv5_3_pool" + str(level) + "_conv",
"conv5_3_pool" + str(level) + "_conv_bn"
]
kernel = (kernel_strides_map[level], kernel_strides_map[level])
strides = (kernel_strides_map[level], kernel_strides_map[level])
prev_layer = AveragePooling2D(kernel, strides=strides)(prev_layer)
prev_layer = Conv2D(512, (1, 1), strides=(1, 1), name=names[0],
use_bias=False)(prev_layer)
prev_layer = BN(name=names[1])(prev_layer)
prev_layer = Activation('relu')(prev_layer)
# prev_layer = Lambda(Interp, arguments={
# 'shape': feature_map_shape})(prev_layer)
prev_layer = Interp(feature_map_shape)(prev_layer)
return prev_layer
def build_pyramid_pooling_module(res, input_shape):
"""Build the Pyramid Pooling Module."""
# ---PSPNet concat layers with Interpolation
feature_map_size = tuple(int(ceil(input_dim / 8.0))
for input_dim in input_shape)
print("PSP module will interpolate to a final feature map size of %s" %
(feature_map_size, ))
interp_block1 = interp_block(res, 1, feature_map_size, input_shape)
interp_block2 = interp_block(res, 2, feature_map_size, input_shape)
interp_block3 = interp_block(res, 3, feature_map_size, input_shape)
interp_block6 = interp_block(res, 6, feature_map_size, input_shape)
# concat all these layers. resulted
# shape=(1,feature_map_size_x,feature_map_size_y,4096)
res = Concatenate()([res,
interp_block6,
interp_block3,
interp_block2,
interp_block1])
return res
def build_pspnet(nb_classes, resnet_layers, input_shape, activation='softmax'):
"""Build PSPNet."""
print("Building a PSPNet based on ResNet %i expecting inputs of shape %s predicting %i classes" % (
resnet_layers, input_shape, nb_classes))
inp = Input((input_shape[0], input_shape[1], 3))
res = ResNet(inp, layers=resnet_layers)
psp = build_pyramid_pooling_module(res, input_shape)
x = Conv2D(512, (3, 3), strides=(1, 1), padding="same", name="conv5_4",
use_bias=False)(psp)
x = BN(name="conv5_4_bn")(x)
x = Activation('relu')(x)
x = Dropout(0.1)(x)
x = Conv2D(nb_classes, (1, 1), strides=(1, 1), name="conv6")(x)
# x = Lambda(Interp, arguments={'shape': (
# input_shape[0], input_shape[1])})(x)
x = Interp([input_shape[0], input_shape[1]])(x)
x = Activation('softmax')(x)
model = Model(inputs=inp, outputs=x)
# Solver
sgd = SGD(lr=learning_rate, momentum=0.9, nesterov=True)
model.compile(optimizer=sgd,
loss='categorical_crossentropy',
metrics=['accuracy'])
return model