-
Notifications
You must be signed in to change notification settings - Fork 7
/
visualize_query_gallery_rankings.py
585 lines (524 loc) · 30.4 KB
/
visualize_query_gallery_rankings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
import ntpath
import random
import cv2
import math
import matplotlib
import numpy as np
import matplotlib.cm as cm
import colorsys
from torchreid.data.datasets.keypoints_to_masks import rescale_keypoints
from torchreid.utils import Logger, perc
from torchreid.utils.engine_state import EngineState
from scipy import stats
GRID_SPACING_V = 50
GRID_SPACING_H = 30
QUERY_EXTRA_SPACING = 10
TOP_MARGIN = 150
LEFT_MARGIN = 100
RIGHT_MARGIN = 450
BOTTOM_MARGIN = 200
ROW_BACKGROUND_LEFT_MARGIN = 75
ROW_BACKGROUND_RIGHT_MARGIN = 75
LEFT_TEXT_OFFSET = 10
BW = 12 # border width
GREEN = (0, 255, 0)
RED = (0, 0, 255)
BLUE = (255, 0, 0)
YELLOW = (255, 255, 0)
PURPLE = (191, 64, 191)
BLACK = (0, 0, 0)
TEXT_FONT = cv2.FONT_HERSHEY_SIMPLEX
TEXT_COLOR = (0, 0, 0)
TEXT_LINE_TYPE = cv2.LINE_AA
WIDTH = 128
HEIGHT = 256
SMALL_FONSCALE = 0.7
SMALL_THICK = 1
MEDIUM_FONSCALE = 1.5
MEDIUM_THICK = 2
cmap = matplotlib.cm.get_cmap('hsv')
BP_COLORS = [(153, 153, 255), (204, 153, 255), (255, 255, 153), (153, 255, 204), (153, 255, 153), (153, 255, 204), (153, 255, 255), (153, 204, 255), (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0)]
# TODO document and make code easier to read and adapt, i.e. less intricate
def visualize_ranking_grid(distmat, body_parts_distmat, test_loader, dataset_name, qf_parts_visibility, gf_parts_visibility, q_parts_masks, g_parts_masks, q_pids, g_pids, q_camids, g_camids, q_anns, g_anns, eval_metrics, save_dir, topk, visrank_q_idx_list, visrank_count, config=None, bp_idx=None):
num_q, num_g = distmat.shape
query_dataset = test_loader['query'].dataset
gallery_dataset = test_loader['gallery'].dataset
assert num_q == len(query_dataset)
assert num_g == len(gallery_dataset)
indices = np.argsort(distmat, axis=1)
matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32)
vis_thresh = config.model.kpr.keypoints.vis_thresh
display_mode = config.test.visrank_display_mode
all_AP = eval_metrics['all_AP']
mAP_index_sort = np.argsort(all_AP)
# Prepare images for query visualization
mask_filtering_flag = qf_parts_visibility is not None or gf_parts_visibility is not None
if qf_parts_visibility is None:
qf_parts_visibility = np.ones((num_q, body_parts_distmat.shape[0]), dtype=bool)
if gf_parts_visibility is None:
gf_parts_visibility = np.ones((num_g, body_parts_distmat.shape[0]), dtype=bool)
if display_mode == 'display_worst':
q_idx_list = mAP_index_sort[:visrank_count]
elif display_mode == 'display_worst_rand':
if visrank_count >= len(mAP_index_sort):
q_idx_list = mAP_index_sort
else:
frozen_lognorm = stats.lognorm(s=1., scale=math.exp(0.))
proba_per_sorted_index = frozen_lognorm.pdf(np.linspace(0, 4, len(mAP_index_sort)))
q_idx_list = np.random.choice(mAP_index_sort, replace=False, size=visrank_count, p=proba_per_sorted_index/proba_per_sorted_index.sum())
else:
n_missing = visrank_count - len(visrank_q_idx_list)
if n_missing > 0:
q_idx_list = visrank_q_idx_list
remaining_idx = np.arange(0, num_q)
q_idx_list = np.append(q_idx_list, np.random.choice(remaining_idx, replace=False, size=n_missing))
elif n_missing < 0:
q_idx_list = np.array(visrank_q_idx_list[:visrank_count])
else:
q_idx_list = np.array(visrank_q_idx_list)
q_idx_list = q_idx_list.astype(int)
print("visualize_ranking_grid for dataset {}, bp {} and ids {}".format(dataset_name, bp_idx, q_idx_list))
for q_idx in q_idx_list:
if q_idx >= len(query_dataset):
# FIXME this happen when using multiple target dataset with 'visrank_q_idx_list' provided for another dataset
new_q_idx = random.randint(0, len(query_dataset)-1)
print("Invalid query index {}, using random index {} instead".format(q_idx, new_q_idx))
q_idx = new_q_idx
query = query_dataset[q_idx]
qpid, qcamid, qimg_path, q_target_m, q_prompt_m = query['pid'], query['camid'], query['img_path'], query.get('target_masks', None), query.get('prompt_masks', None)
display_prompt = q_prompt_m is not None
display_target = q_target_m is not None
qmasks = q_parts_masks[q_idx]
if "keypoints_xyc" in q_anns:
qkp = q_anns["keypoints_xyc"][q_idx]
else:
qkp = None
if "negative_keypoints_xyc" in q_anns:
qnegkp = q_anns["negative_keypoints_xyc"][q_idx]
else:
qnegkp = None
if bp_idx is not None:
qmasks = qmasks[bp_idx:bp_idx+1]
query_sample = (q_idx, qpid, qcamid, qimg_path, q_target_m, q_prompt_m, qmasks, qkp, qnegkp, qf_parts_visibility[q_idx, :])
gallery_topk_samples = []
rank_idx = 1
order = indices[q_idx]
remove = test_loader['query'].dataset.gallery_filter(qpid, qcamid, None, g_pids[order], g_camids[order], None)
keep = np.invert(remove) & (distmat[q_idx, order] >= 0)
valid_g_indices = indices[q_idx][keep]
q_matches = matches[q_idx][keep]
last_match = np.where(q_matches == 1)[0][-1]
ranking_info = {
"total_positive": np.sum(q_matches),
"total_candidates": len(q_matches),
"last_match_idx": last_match,
}
to_display_q = np.append(valid_g_indices[:topk], valid_g_indices[last_match])
assert gallery_dataset[valid_g_indices[last_match]]['pid'] == qpid
for g_idx in to_display_q:
gallery = gallery_dataset[g_idx]
gpid, gcamid, gimg_path, g_target_m, g_prompt_m = gallery['pid'], gallery['camid'], gallery['img_path'], gallery.get('target_masks', None), gallery.get('prompt_masks', None)
gmasks = g_parts_masks[g_idx]
if "keypoints_xyc" in g_anns:
gkp = g_anns["keypoints_xyc"][g_idx]
else:
gkp = None
if "negative_keypoints_xyc" in q_anns:
gnegkp = g_anns["negative_keypoints_xyc"][g_idx]
else:
gnegkp = None
if bp_idx is not None:
gmasks = gmasks[bp_idx:bp_idx+1]
gallery_sample = (g_idx, gpid, gcamid, gimg_path, g_target_m, g_prompt_m, gmasks, gkp, gnegkp, gf_parts_visibility[g_idx, :], qpid == gpid,
distmat[q_idx, g_idx],
body_parts_distmat[:, q_idx, g_idx])
gallery_topk_samples.append(gallery_sample)
rank_idx += 1
if len(gallery_topk_samples) > 0:
show_ranking_grid(query_sample, gallery_topk_samples, eval_metrics, dataset_name, config, mask_filtering_flag, bp_idx, display_prompt, display_target, ranking_info, vis_thresh)
else:
print("Skip ranking plot of query id {} ({}), no valid gallery available".format(q_idx, qimg_path))
def show_ranking_grid(query_sample, gallery_topk_samples, eval_metrics, dataset_name, config, mask_filtering_flag, bp_idx, display_prompt, display_target, ranking_info, vis_thresh):
qidx, qpid, qcamid, qimg_path, q_target_m, q_prompt_m, qmasks, qkp, qnegkp, qf_parts_visibility = query_sample
mAP = eval_metrics['mAP']
AP = eval_metrics['all_AP'][qidx]
rank1 = eval_metrics['cmc'][0]
use_negative_keypoints = config.model.kpr.keypoints.use_negative_keypoints
add_cols = 0
if display_prompt:
add_cols += 1
if use_negative_keypoints:
add_cols += 1
if display_target:
add_cols += 1
topk = len(gallery_topk_samples)
bp_num = len(qf_parts_visibility)
num_cols = bp_num + 1 + add_cols
num_rows = topk + 1
grid_img = 255 * np.ones(
(
num_rows * HEIGHT + (num_rows + 1) * GRID_SPACING_V + QUERY_EXTRA_SPACING + TOP_MARGIN + BOTTOM_MARGIN,
num_cols * WIDTH + (num_cols + 1) * GRID_SPACING_H + QUERY_EXTRA_SPACING + LEFT_MARGIN + RIGHT_MARGIN,
3
),
dtype=np.uint8
)
samples = [query_sample] + gallery_topk_samples
insert_background_line(grid_img, BLUE, 0, HEIGHT, 120, 0)
insert_background_line(grid_img, BLUE, len(samples), HEIGHT, 0, -75)
pos = (int(grid_img.shape[1]/2), 0)
filtering_str = "body part filtering with threshold {}".format(config.model.kpr.masks.mask_filtering_threshold) if config.model.kpr.mask_filtering_testing else "no body part filtering"
align_top_text(grid_img, "Ranking for dataset {}, job {}, pid {}, AP {:.2f}%, mAP {:.2f}%, rank1 {:.2f}%, loss {}, {}".format(dataset_name, config.project.job_id, qpid, AP * 100, mAP * 100, rank1 * 100, config.loss.part_based.name, filtering_str), pos, SMALL_FONSCALE, SMALL_THICK, 15)
for row, sample in enumerate(samples):
display_sample_on_row(grid_img, sample, row, (WIDTH, HEIGHT), mask_filtering_flag, qf_parts_visibility, [config.data.width, config.data.height], display_prompt, display_target, use_negative_keypoints, ranking_info, len(samples), vis_thresh)
for col in range(1+add_cols, num_cols):
parts_visibility_count = 0
row = topk+1
bp_idx = col - 1 - add_cols
distances = []
for i, sample in enumerate(samples):
if i == 0:
idx, pid, camid, img_path, target_m, prompt_m, masks, kp, negkp, parts_visibility = sample
else:
idx, pid, camid, img_path, target_m, prompt_m, masks, kp, negkp, parts_visibility, matched, dist_to_query, body_parts_dist_to_query = sample
distances.append(body_parts_dist_to_query[bp_idx])
parts_visibility_count += parts_visibility[bp_idx]
distances = np.asarray(distances)
min = distances.min()
max = distances.max()
mean = distances.mean()
pos = (col * WIDTH + int(WIDTH / 2) + (col + 1) * GRID_SPACING_H + QUERY_EXTRA_SPACING + LEFT_MARGIN,
(row) * HEIGHT + int(HEIGHT / 2) + (row + 1) * GRID_SPACING_V + QUERY_EXTRA_SPACING + TOP_MARGIN)
align_top_multi_text(grid_img, "Bp={:.1f}/{}\nMin={:.1f}\nMean={:.1f}\nMax={:.1f}".format(
parts_visibility_count, topk + 1, min, mean, max), pos, SMALL_FONSCALE, SMALL_THICK, 10)
if bp_idx is not None:
filename = "_{}_{}_qidx_{}_qpid_{}_{}_part_{}.jpg".format(config.project.job_id, dataset_name, qidx, qpid, ntpath.basename(qimg_path), bp_idx)
else:
filename = "_{}_{}_qidx_{}_qpid_{}_{}.jpg".format(config.project.job_id, dataset_name, qidx, qpid, ntpath.basename(qimg_path))
# path = os.path.join(save_dir, filename)
# Path(os.path.dirname(path)).mkdir(parents=True, exist_ok=True)
# cv2.imwrite(path, grid_img)
Logger.current_logger().add_image("Ranking grid", filename, cv2.cvtColor(grid_img, cv2.COLOR_BGR2RGB), EngineState.current_engine_state().epoch)
def insert_background_line(grid_img, match_color, row, height, padding_top=0, padding_bottom=0):
alpha = 0.1
color = (255 * (1-alpha) + match_color[0] * alpha,
255 * (1-alpha) + match_color[1] * alpha,
255 * (1-alpha) + match_color[2] * alpha)
hs = row * height + (row + 1) * GRID_SPACING_V + QUERY_EXTRA_SPACING + TOP_MARGIN - int(GRID_SPACING_V/2) + 15 - padding_top
he = (row + 1) * height + (row + 1) * GRID_SPACING_V + QUERY_EXTRA_SPACING + TOP_MARGIN + int(GRID_SPACING_V/2) + 15 + padding_bottom
ws = ROW_BACKGROUND_LEFT_MARGIN
we = grid_img.shape[1] - ROW_BACKGROUND_RIGHT_MARGIN
grid_img[hs:he, ws:we, :] = color
def display_sample_on_row(grid_img, sample, row, img_shape, mask_filtering_flag, q_parts_visibility, model_img_size, display_prompt, display_target, use_negative_keypoints, ranking_info, total_rows, vis_thresh):
if row == 0:
idx, pid, camid, img_path, target_m, prompt_m, masks, kp, negkp, parts_visibility = sample
matched, dist_to_query, body_parts_dist_to_query = None, None, None
else:
idx, pid, camid, img_path, target_m, prompt_m, masks, kp, negkp, parts_visibility, matched, dist_to_query, body_parts_dist_to_query = sample
masks = masks.numpy()
width, height = img_shape
bp_num = masks.shape[0]
img = cv2.imread(img_path)
img = cv2.resize(img, (width, height))
add_cols = 0
if display_prompt:
add_cols += 1
if use_negative_keypoints:
add_cols += 1
if display_target:
add_cols += 1
num_cols = bp_num + 1 + add_cols + 1
for col in range(0, num_cols):
bp_idx = col - 1 - add_cols - 1
if row == 0 and col == 0:
img_to_insert = img.copy()
if kp is not None:
img_to_insert = draw_keypoints(img_to_insert, kp, model_img_size, vis_thresh=vis_thresh)
if negkp is not None:
for i in range(negkp.shape[0]):
img_to_insert = draw_keypoints(img_to_insert, negkp[i], model_img_size, vis_thresh=vis_thresh, color=RED)
img_to_insert = make_border(img_to_insert, BLUE, BW)
pos = ((num_cols) * width + (num_cols + 1) * GRID_SPACING_H + QUERY_EXTRA_SPACING + LEFT_MARGIN,
row * height + int(height / 2) + (row + 1) * GRID_SPACING_V + TOP_MARGIN)
align_left_multitext(grid_img, "*Id = {}*\n"
"Visible = {}/{}\n"
"# positives = {}\n"
"# gallery candidates = {}\n".format(
pid, parts_visibility.sum(), bp_num, ranking_info["total_positive"], ranking_info["total_candidates"]), pos, SMALL_FONSCALE, SMALL_THICK, 10)
elif col == 0:
match_color = GREEN if matched else RED
insert_background_line(grid_img, match_color, row, height)
img_to_insert = img.copy()
if kp is not None:
img_to_insert = draw_keypoints(img_to_insert, kp, model_img_size, vis_thresh=vis_thresh)
if negkp is not None:
for i in range(negkp.shape[0]):
img_to_insert = draw_keypoints(img_to_insert, negkp[i], model_img_size, vis_thresh=vis_thresh, color=RED)
img_to_insert = make_border(img_to_insert, match_color, BW)
pos = (LEFT_MARGIN + GRID_SPACING_H,
row * height + int(height / 2) + (row + 1) * GRID_SPACING_V + QUERY_EXTRA_SPACING + TOP_MARGIN)
ranking_position = row if row<total_rows-1 else ranking_info["last_match_idx"]+1
align_right_text(grid_img, str(ranking_position), pos, MEDIUM_FONSCALE, MEDIUM_THICK, 30)
pos = (LEFT_MARGIN + GRID_SPACING_H + int(width / 2),
(row + 1) * height + (row + 1) * GRID_SPACING_V + QUERY_EXTRA_SPACING + TOP_MARGIN)
g_to_q_vis_score = np.sqrt(q_parts_visibility * parts_visibility).sum() / bp_num
align_top_text(grid_img, "{}% | {:.2f}".format(int(perc(g_to_q_vis_score, 0)), dist_to_query), pos, SMALL_FONSCALE, SMALL_THICK, 10)
pos = ((num_cols) * width + (num_cols + 1) * GRID_SPACING_H + QUERY_EXTRA_SPACING + LEFT_MARGIN,
row * height + int(height / 2) + (row + 1) * GRID_SPACING_V + QUERY_EXTRA_SPACING + TOP_MARGIN)
if len(parts_visibility) == 1 or parts_visibility.sum() == 0:
valid_body_parts_dist = body_parts_dist_to_query
else:
valid_body_parts_dist = body_parts_dist_to_query[parts_visibility > 0]
align_left_multitext(grid_img, "*Id = {}*\n"
"Idx = {}\n"
"Cam id = {}\n"
"Name = {}\n"
"Bp Visibles = {}/{}\n"
"[{:.2f}; {:.2f}; {:.2f}]\n"
"[{:.2f}; {:.2f}; {:.2f}]".format(
pid, idx, camid, ntpath.basename(img_path), (parts_visibility > 0).sum(), bp_num,
body_parts_dist_to_query.min(), body_parts_dist_to_query.mean(), body_parts_dist_to_query.max(),
valid_body_parts_dist.min(), valid_body_parts_dist.mean(), valid_body_parts_dist.max()), pos, 0.6, 1, 10, match_color)
elif col == 1 and display_prompt:
if row == 0:
pos = (col * width + int(width / 2) + (col + 1) * GRID_SPACING_H + QUERY_EXTRA_SPACING + LEFT_MARGIN,
(row + 1) * height + (row + 1) * GRID_SPACING_V + TOP_MARGIN)
else:
pos = (col * width + int(width / 2) + (col + 1) * GRID_SPACING_H + QUERY_EXTRA_SPACING + LEFT_MARGIN,
(row + 1) * height + (row + 1) * GRID_SPACING_V + QUERY_EXTRA_SPACING + TOP_MARGIN)
align_top_text(grid_img, "pos. prompt", pos, SMALL_FONSCALE, SMALL_THICK, 10)
offset = 1
if use_negative_keypoints:
offset += 1
mask = prompt_m[offset:].max(dim=0)[0].numpy()
img_with_mask_overlay = mask_overlay(img, mask)
img_to_insert = make_border(img_with_mask_overlay, GREEN, BW)
elif col == 2 and display_prompt and use_negative_keypoints:
if row == 0:
pos = (col * width + int(width / 2) + (col + 1) * GRID_SPACING_H + QUERY_EXTRA_SPACING + LEFT_MARGIN,
(row + 1) * height + (row + 1) * GRID_SPACING_V + TOP_MARGIN)
else:
pos = (col * width + int(width / 2) + (col + 1) * GRID_SPACING_H + QUERY_EXTRA_SPACING + LEFT_MARGIN,
(row + 1) * height + (row + 1) * GRID_SPACING_V + QUERY_EXTRA_SPACING + TOP_MARGIN)
align_top_text(grid_img, "neg. prompt", pos, SMALL_FONSCALE, SMALL_THICK, 10)
bckg_mask = prompt_m[1].numpy()
img_with_mask_overlay = mask_overlay(img, bckg_mask)
img_to_insert = make_border(img_with_mask_overlay, GREEN, BW)
elif col == add_cols and display_target:
if row == 0:
pos = (col * width + int(width / 2) + (col + 1) * GRID_SPACING_H + QUERY_EXTRA_SPACING + LEFT_MARGIN,
(row + 1) * height + (row + 1) * GRID_SPACING_V + TOP_MARGIN)
else:
pos = (col * width + int(width / 2) + (col + 1) * GRID_SPACING_H + QUERY_EXTRA_SPACING + LEFT_MARGIN,
(row + 1) * height + (row + 1) * GRID_SPACING_V + QUERY_EXTRA_SPACING + TOP_MARGIN)
align_top_text(grid_img, "hum. pars. l.", pos, SMALL_FONSCALE, SMALL_THICK, 10)
img_with_mask_overlay = colored_body_parts_overlay(img, target_m[1:].numpy())
# mask = target_m[1:].max(dim=0)[0].numpy()
# img_with_mask_overlay = mask_overlay(img, mask)
img_to_insert = make_border(img_with_mask_overlay, GREEN, BW)
elif col == add_cols+1:
if row == 0:
pos = (col * width + int(width / 2) + (col + 1) * GRID_SPACING_H + QUERY_EXTRA_SPACING + LEFT_MARGIN,
(row + 1) * height + (row + 1) * GRID_SPACING_V + TOP_MARGIN)
else:
pos = (col * width + int(width / 2) + (col + 1) * GRID_SPACING_H + QUERY_EXTRA_SPACING + LEFT_MARGIN,
(row + 1) * height + (row + 1) * GRID_SPACING_V + QUERY_EXTRA_SPACING + TOP_MARGIN)
align_top_text(grid_img, "parts att.", pos, SMALL_FONSCALE, SMALL_THICK, 10)
img_with_mask_overlay = colored_body_parts_overlay(img, masks[1:])
img_to_insert = make_border(img_with_mask_overlay, GREEN, BW)
# elif col == add_cols+2:
# if row == 0:
# pos = (col * width + int(width / 2) + (col + 1) * GRID_SPACING_H + QUERY_EXTRA_SPACING + LEFT_MARGIN,
# (row + 1) * height + (row + 1) * GRID_SPACING_V + TOP_MARGIN)
# else:
# pos = (col * width + int(width / 2) + (col + 1) * GRID_SPACING_H + QUERY_EXTRA_SPACING + LEFT_MARGIN,
# (row + 1) * height + (row + 1) * GRID_SPACING_V + QUERY_EXTRA_SPACING + TOP_MARGIN)
# align_top_text(grid_img, "parts", pos, SMALL_FONSCALE, SMALL_THICK, 10)
# # display colored body parts with white background
# img_with_mask_overlay = colored_body_parts_overlay(img, masks[1:], alpha=0.)
# img_to_insert = make_border(img_with_mask_overlay, GREEN, BW)
else:
if row == 0:
pos = (col * width + int(width / 2) + (col + 1) * GRID_SPACING_H + QUERY_EXTRA_SPACING + LEFT_MARGIN,
TOP_MARGIN + GRID_SPACING_V)
align_bottom_text(grid_img, str(bp_idx), pos, MEDIUM_FONSCALE, MEDIUM_THICK, 35)
pos = (col * width + int(width / 2) + (col + 1) * GRID_SPACING_H + QUERY_EXTRA_SPACING + LEFT_MARGIN,
(row + 1) * height + (row + 1) * GRID_SPACING_V + TOP_MARGIN)
align_top_text(grid_img, "{}%".format(int(perc(parts_visibility[bp_idx], 0))), pos, SMALL_FONSCALE, SMALL_THICK, 10)
if row != 0:
pos = (col * width + int(width / 2) + (col + 1) * GRID_SPACING_H + QUERY_EXTRA_SPACING + LEFT_MARGIN,
(row + 1) * height + (row + 1) * GRID_SPACING_V + QUERY_EXTRA_SPACING + TOP_MARGIN)
thickness = 2 if body_parts_dist_to_query.argmax() == bp_idx or body_parts_dist_to_query.argmin() == bp_idx else 1
align_top_text(grid_img, "{}% | {:.2f}".format(int(perc(parts_visibility[bp_idx], 0)), body_parts_dist_to_query[bp_idx]), pos, SMALL_FONSCALE, thickness, 10)
mask = masks[bp_idx, :, :]
img_with_mask_overlay = mask_overlay(img, mask)
if mask_filtering_flag:
# match_color = GREEN if parts_visibility[bp_idx] else RED
match_color = cmap(parts_visibility[bp_idx].item()/3, bytes=True)[0:-1] # divided by three because hsv colormap goes from red to green inside [0, 0.333]
img_to_insert = make_border(img_with_mask_overlay, (int(match_color[2]), int(match_color[1]), int(match_color[0])), BW)
else:
img_to_insert = img_with_mask_overlay
insert_img_into_grid(grid_img, img_to_insert, row, col)
def mask_overlay(img, mask, clip=True, interpolation=cv2.INTER_CUBIC):
width, height = img.shape[1], img.shape[0]
mask = cv2.resize(mask, dsize=(width, height), interpolation=interpolation)
if clip:
mask = np.clip(mask, 0, 1)
mask = (mask * 255).astype(np.uint8)
else:
mask = np.interp(mask, (mask.min(), mask.max()), (0, 255)).astype(np.uint8)
mask_color = cv2.applyColorMap(mask, cv2.COLORMAP_JET)
masked_img = cv2.addWeighted(img, 0.5, mask_color.astype(img.dtype), 0.5, 0)
return masked_img
def scale_lightness(rgb, scale_l=1.4):
# convert rgb to hls
h, l, s = colorsys.rgb_to_hls(*rgb)
# manipulate h, l, s values and return as rgb
return colorsys.hls_to_rgb(h, min(1, l * scale_l), s = s)
def colored_body_parts_overlay(img, masks, clip=True, interpolation=cv2.INTER_CUBIC, alpha=0.28, mask_threshold=0, weight_scale=1):
width, height = img.shape[1], img.shape[0]
white_bckg = np.ones_like(img) * 255
for i in range(masks.shape[0]):
mask = cv2.resize(masks[i], dsize=(width, height), interpolation=interpolation)
if clip:
mask = np.clip(mask, 0, 1)
else:
mask = np.interp(mask, (mask.min(), mask.max()), (0, 255)).astype(np.uint8)
weight = mask
mask_alpha = np.ones_like(weight)
mask_alpha[mask < mask_threshold] = 0
mask_alpha = np.expand_dims(mask_alpha, 2)
weight = np.expand_dims(weight, 2) / weight_scale
color_img = np.zeros_like(img)
# print(f"(len(masks)-1) {(len(masks)-1)} - i {i}")
color = scale_lightness(cm.gist_rainbow(i / (len(masks)-1))[0:-1])
# print(f"color {color}")
# print(f"color_flip {np.flip(np.array(color)*255).astype(np.uint8)}")
color_img[:] = np.flip(np.array(color)*255).astype(np.uint8)
white_bckg = white_bckg * (1 - mask_alpha * weight) + color_img * mask_alpha * weight
masked_img = cv2.addWeighted(img, alpha, white_bckg.astype(img.dtype), 1-alpha, 0)
return masked_img
def align_top_text(img, text, pos, fontScale=1.0, thickness=1, padding=4):
textsize = cv2.getTextSize(text, TEXT_FONT, fontScale, thickness)[0]
textX = int(pos[0] - (textsize[0] / 2))
textY = pos[1] + textsize[1] + padding
cv2.putText(img, text, (textX, textY), TEXT_FONT, fontScale=fontScale, color=TEXT_COLOR, thickness=thickness,
lineType=TEXT_LINE_TYPE)
def align_top_multi_text(img, text, pos, fontScale=1.0, thickness=1, padding=4, text_color=(0, 0, 0)):
v_padding = 20
text_lines = text.split('\n')
text_line_height = cv2.getTextSize(text_lines[0], TEXT_FONT, fontScale, thickness)[0][1]
text_height = len(text_lines) * text_line_height + (len(text_lines)-1) * v_padding
textY = int(pos[1] - text_height + text_line_height) + padding
for i, text_line in enumerate(text_lines):
bold_marker = "*"
bold = text_line.startswith(bold_marker) and text_line.endswith(bold_marker)
line_thickness = thickness+1 if bold else thickness
if bold:
text_line = text_line[len(bold_marker):len(text_line)-len(bold_marker)]
textsize = cv2.getTextSize(text_line, TEXT_FONT, fontScale, thickness)[0]
text_line_pos = (int(pos[0] - (textsize[0] / 2)), textY + (text_line_height + v_padding) * i)
text_color = text_color if i == 0 else TEXT_COLOR
cv2.putText(img, text_line, text_line_pos, TEXT_FONT, fontScale=fontScale, color=TEXT_COLOR, thickness=line_thickness,
lineType=TEXT_LINE_TYPE)
def align_bottom_text(img, text, pos, fontScale=1.0, thickness=1, padding=4):
textsize = cv2.getTextSize(text, TEXT_FONT, fontScale, thickness)[0]
textX = int(pos[0] - (textsize[0] / 2))
textY = pos[1] - padding
cv2.putText(img, text, (textX, textY), TEXT_FONT, fontScale=fontScale, color=TEXT_COLOR, thickness=thickness,
lineType=TEXT_LINE_TYPE)
def align_right_text(img, text, pos, fontScale=1.0, thickness=1, padding=4):
textsize = cv2.getTextSize(text, TEXT_FONT, fontScale, thickness)[0]
textX = pos[0] - textsize[0] - padding
textY = int(pos[1] + (textsize[1] / 2))
cv2.putText(img, text, (textX, textY), TEXT_FONT, fontScale=fontScale, color=TEXT_COLOR, thickness=thickness,
lineType=TEXT_LINE_TYPE)
def align_left_multitext(img, text, pos, fontScale=1.0, thickness=1, padding=4, text_color=(0, 0, 0)):
v_padding = 20
text_lines = text.split('\n')
text_line_height = cv2.getTextSize(text_lines[0], TEXT_FONT, fontScale, thickness)[0][1]
text_height = len(text_lines) * text_line_height + (len(text_lines)-1) * v_padding
textX = pos[0] + padding
textY = int(pos[1] - (text_height / 2) + text_line_height)
for i, text_line in enumerate(text_lines):
bold_marker = "*"
bold = text_line.startswith(bold_marker) and text_line.endswith(bold_marker)
line_thickness = thickness+1 if bold else thickness
if bold:
text_line = text_line[len(bold_marker):len(text_line)-len(bold_marker)]
pos = (textX, textY + (text_line_height + v_padding) * i)
text_color = text_color if i == 0 else TEXT_COLOR
cv2.putText(img, text_line, pos, TEXT_FONT, fontScale=fontScale, color=text_color, thickness=line_thickness,
lineType=TEXT_LINE_TYPE)
def centered_text(img, text, pos, fontScale=1, thickness=1):
textsize = cv2.getTextSize(text, TEXT_FONT, fontScale, thickness)[0]
textX = int(pos[0] - (textsize[0] / 2))
textY = int(pos[1] + (textsize[1] / 2))
cv2.putText(img, text, (textX, textY), TEXT_FONT, fontScale=fontScale, color=TEXT_COLOR, thickness=thickness,
lineType=TEXT_LINE_TYPE)
def insert_img_into_grid(grid_img, img, row, col):
extra_spacing_h = QUERY_EXTRA_SPACING if row > 0 else 0
extra_spacing_w = QUERY_EXTRA_SPACING if col > 0 else 0
width, height = img.shape[1], img.shape[0]
hs = row * height + (row + 1) * GRID_SPACING_V + extra_spacing_h + TOP_MARGIN
he = (row + 1) * height + (row + 1) * GRID_SPACING_V + extra_spacing_h + TOP_MARGIN
ws = col * width + (col + 1) * GRID_SPACING_H + extra_spacing_w + LEFT_MARGIN
we = (col + 1) * width + (col + 1) * GRID_SPACING_H + extra_spacing_w + LEFT_MARGIN
grid_img[hs:he, ws:we, :] = img
def make_border(img, border_color, bw):
img_b = cv2.copyMakeBorder(
img,
bw, bw, bw, bw,
cv2.BORDER_CONSTANT,
value=border_color
)
img_b = cv2.resize(img_b, (img.shape[1], img.shape[0]))
return img_b
def draw_keypoints(img_to_insert, kp, model_img_size=None, radius=2, thickness=2, vis_thresh=0, color=None, use_confidence_color=False):
if model_img_size is not None:
kp = rescale_keypoints(kp, model_img_size, (img_to_insert.shape[1], img_to_insert.shape[0]))
for xyck in kp:
x, y, c, k = xyck
if c > 0:
if color is not None:
if c > vis_thresh:
match_color = color
kp_thickness = 2
kp_radius = 1
else:
match_color = BLACK
kp_thickness = thickness-1
kp_radius = radius-1
elif use_confidence_color:
if c > vis_thresh:
match_color = cmap(c/3, bytes=True)[0:-1] # divided by three because hsv colormap goes from red to green inside [0, 0.333]
match_color = (int(match_color[2]), int(match_color[1]), int(match_color[0]))
kp_thickness = thickness
kp_radius = radius
else:
match_color = RED
kp_thickness = thickness-1
kp_radius = radius-1
else:
if c > vis_thresh:
# print(f"kp[:, -1].max(): {kp[:, -1].max()} - kp[:, -1].min(): {kp[:, -1].min()} - k: {k}")
match_color = scale_lightness(cm.gist_rainbow(k / kp[:, -1].max())[0:-1])
# print(f"match_color 1: {match_color}")
match_color = (np.array(match_color) * 255).astype(np.uint8)
match_color = (int(match_color[2]), int(match_color[1]), int(match_color[0]))
# print(f"match_color 2: {match_color}")
kp_thickness = thickness
kp_radius = radius
else:
match_color = RED
kp_thickness = thickness-1
kp_radius = radius-1
cv2.circle(
img_to_insert,
(int(x), int(y)),
color=match_color,
thickness=kp_thickness,
radius=kp_radius,
# lineType=cv2.LINE_AA,
)
return img_to_insert