-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathgoldfish_lv.py
654 lines (597 loc) · 32.4 KB
/
goldfish_lv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import time
import json
import argparse
import torch
import cv2
import moviepy.editor as mp
import webvtt
import re
from typing import Optional, List
from tqdm import tqdm
from PIL import Image
from torchvision import transforms
from pytubefix import YouTube
from minigpt4.common.eval_utils import init_model
from minigpt4.conversation.conversation import CONV_VISION
from index import MemoryIndex
import pysrt
import chardet
from openai import OpenAI
if os.getenv("OPENAI_API_KEY") is not None:
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
else:
client = OpenAI(api_key="")
from transformers import AutoTokenizer, AutoModelForCausalLM
import re
from transformers import BitsAndBytesConfig
# from split_long_video_in_parallel import split_video
import transformers
import whisper
from datetime import timedelta
# Function to format timestamps for VTT
def format_timestamp(seconds):
td = timedelta(seconds=seconds)
total_seconds = int(td.total_seconds())
milliseconds = int(td.microseconds / 1000)
hours, remainder = divmod(total_seconds, 3600)
minutes, seconds = divmod(remainder, 60)
return f"{hours:02}:{minutes:02}:{seconds:02}.{milliseconds:03}"
def clean_text(subtitles_text):
# Remove unwanted characters except for letters, digits, spaces, periods, commas, exclamation marks, and single quotes
subtitles_text = re.sub(r'[^a-zA-Z0-9\s\']', '', subtitles_text)
# Replace multiple spaces with a single space
subtitles_text = re.sub(r'\s+', ' ', subtitles_text)
return subtitles_text.strip()
def time_to_seconds(subrip_time):
return subrip_time.hours * 3600 + subrip_time.minutes * 60 + subrip_time.seconds + subrip_time.milliseconds / 1000
def split_subtitles(subtitle_path, n):
# read the subtitle file and detect the encoding
with open(subtitle_path, 'rb') as f:
result = chardet.detect(f.read())
subs = pysrt.open(subtitle_path, encoding=result['encoding'])
total_subs = len(subs)
if n <= 0 or n > total_subs:
print("Invalid value for n. It should be a positive integer less than or equal to the total number of subtitles.")
return None
subs_per_paragraph = total_subs // n
remainder = total_subs % n
paragraphs = []
current_index = 0
for i in range(n):
num_subs_in_paragraph = subs_per_paragraph + (1 if i < remainder else 0)
paragraph_subs = subs[current_index:current_index + num_subs_in_paragraph]
current_index += num_subs_in_paragraph
# Join subtitles using pysrt's built-in method for efficient formatting
paragraph = pysrt.SubRipFile(items=paragraph_subs).text
paragraphs.append(paragraph)
return paragraphs
class GoldFish_LV:
"""
'GoldFish_LV' class is to handle long video processing and subtitle management with MiniGPT4_video base model.
"""
def __init__(self, args: argparse.Namespace) -> None:
self.args = args
self.model, self.vis_processor,whisper_gpu_id,minigpt4_gpu_id,answer_module_gpu_id = init_model(args)
self.whisper_gpu_id=whisper_gpu_id
self.minigpt4_gpu_id=minigpt4_gpu_id
self.answer_module_gpu_id=answer_module_gpu_id
# self.original_llama_model,self.original_llama_tokenizer=self.load_original_llama_model()
# self.original_llama_model=self.load_original_llama_model_vllm()
self.llama_3_1_model=self.load_llama3_1_model()
self.whisper_model=whisper.load_model("large",device=f"cuda:{self.whisper_gpu_id}")
# self.summary_instruction="Generate a description of this video .Pay close attention to the objects, actions, emotions portrayed in the video,providing a vivid description of key moments.Specify any visual cues or elements that stand out."
self.summary_instruction="I'm a blind person, please provide me with a detailed summary of the video content and try to be as descriptive as possible."
def load_original_llama_model(self):
model_name="meta-llama/Meta-Llama-3-8B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = "[PAD]"
tokenizer.padding_side = "left"
bnb_config = BitsAndBytesConfig(
load_in_8bit=True,
)
llama_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map={'': f"cuda:{self.answer_module_gpu_id}"},
quantization_config=bnb_config,
)
return llama_model,tokenizer
def load_llama3_1_model(self):
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
bnb_config = BitsAndBytesConfig(
load_in_8bit=True,
)
self.llama3_tokenizer = AutoTokenizer.from_pretrained(model_id)
llama3_model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map={'': f"cuda:{self.answer_module_gpu_id}"},
quantization_config=bnb_config,
)
pipeline = transformers.pipeline(
"text-generation",
model=llama3_model,
tokenizer=self.llama3_tokenizer,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map=f"cuda:{self.answer_module_gpu_id}",
)
return pipeline
def _youtube_download(self, url: str) -> str:
try:
video_id = url.split('v=')[-1].split('&')[0]
video_id = video_id.strip()
print(f"Downloading video with ID: {video_id}")
youtube = YouTube(f"https://www.youtube.com/watch?v={video_id}")
video_stream = youtube.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
if not video_stream:
raise ValueError("No suitable video stream found.")
output_path = f"workspace/tmp/{video_id}.mp4"
self.video_id=video_id
video_stream.download(output_path="workspace/tmp", filename=f"{video_id}.mp4")
return output_path
except Exception as e:
print(f"Error downloading video: {e}")
return url
@staticmethod
def is_youtube_url(url: str) -> bool:
youtube_regex = (
r'(https?://)?(www\.)?'
'(youtube|youtu|youtube-nocookie)\.(com|be)/'
'(watch\?v=|embed/|v/|.+\?v=)?([^&=%\?]{11})'
)
return bool(re.match(youtube_regex, url))
def process_video_url(self, video_path: str) -> str:
if self.is_youtube_url(video_path):
return self._youtube_download(video_path)
else:
return video_path
def create_video_grid(self, images: list, rows: int, cols: int, save_path: str) -> Image.Image:
image_width, image_height = images[0].size
grid_width = cols * image_width
grid_height = rows * image_height
new_image = Image.new("RGB", (grid_width, grid_height))
for i in range(rows):
for j in range(cols):
index = i * cols + j
if index < len(images):
image = images[index]
x_offset = j * image_width
y_offset = i * image_height
new_image.paste(image, (x_offset, y_offset))
new_image.save(save_path)
return new_image
def get_subtitles(self, video_path) :
video_name=video_path.split('/')[-2]
video_id=video_path.split('/')[-1].split('.')[0]
audio_dir = f"workspace/audio/{video_name}"
subtitle_dir = f"workspace/subtitles/{video_name}"
os.makedirs(audio_dir, exist_ok=True)
os.makedirs(subtitle_dir, exist_ok=True)
# if the subtitles are already generated, return the path of the subtitles
subtitle_path = f"{subtitle_dir}/{video_id}"+'.vtt'
if os.path.exists(subtitle_path):
return f"{subtitle_dir}/{video_id}"+'.vtt'
audio_path = f"{audio_dir}/{video_id}"+'.mp3'
try:
self.extract_audio(video_path, audio_path)
subtitle_path = f"{subtitle_dir}/{video_id}"+'.vtt'
result = self.whisper_model.transcribe(audio_path,language="en")
# Create VTT file
with open(subtitle_path, "w", encoding="utf-8") as vtt_file:
vtt_file.write("WEBVTT\n\n")
for segment in result['segments']:
start = format_timestamp(segment['start'])
end = format_timestamp(segment['end'])
text = segment['text']
vtt_file.write(f"{start} --> {end}\n{text}\n\n")
return subtitle_path
except Exception as e:
print(f"Error during subtitle generation for {video_path}: {e}")
return None
def prepare_input(self,
video_path: str,
subtitle_path: Optional[str],
instruction: str,previous_caption=""):
# If a subtitle path is provided, read the VTT (Web Video Text Tracks) file, else set to an empty list
conversation=""
if subtitle_path:
vtt_file = webvtt.read(subtitle_path)
print("Subtitle loaded successfully")
try:
for subtitle in vtt_file:
sub = subtitle.text.replace('\n',' ')
conversation+=sub
except:
pass
if self.model.model_type == "Mistral":
max_images_length=90
max_sub_len = 800
else:
max_images_length = 45
max_sub_len = 400
# Load the video file using moviepy and calculate the total number of frames
clip = mp.VideoFileClip(video_path)
total_num_frames = int(clip.duration * clip.fps)
clip.close()
# Calculate how often to sample a frame based on the total number of frames and the maximum images length
cap = cv2.VideoCapture(video_path)
images = []
frame_count = 0
sampling_interval = int(total_num_frames / max_images_length)
if sampling_interval == 0:
sampling_interval = 1
# Initialize variables to hold image placeholders, current subtitle text, and subtitle history
if previous_caption != "":
img_placeholder = previous_caption+" "
else:
img_placeholder = ""
subtitle_text_in_interval = ""
history_subtitles = {}
raw_frames=[]
number_of_words=0
transform=transforms.Compose([
transforms.ToPILImage(),
])
# Loop through each frame in the video
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# TODO: we need to add subtitles in external memory either
if subtitle_path is not None:
for i, subtitle in enumerate(vtt_file):
sub = subtitle.text.replace('\n',' ')
if (subtitle.start_in_seconds <= (frame_count / int(clip.fps)) <= subtitle.end_in_seconds) and sub not in subtitle_text_in_interval:
if not history_subtitles.get(sub, False):
subtitle_text_in_interval += sub + " "
history_subtitles[sub] = True
break
# Process and store the frame at specified intervals
if frame_count % sampling_interval == 0:
raw_frames.append(Image.fromarray(cv2.cvtColor(frame.copy(), cv2.COLOR_BGR2RGB)))
frame = transform(frame[:,:,::-1]) # convert to RGB
frame = self.vis_processor(frame)
images.append(frame)
img_placeholder += '<Img><ImageHere>'
if subtitle_path is not None and subtitle_text_in_interval != "" and number_of_words< max_sub_len:
img_placeholder+=f'<Cap>{subtitle_text_in_interval}'
number_of_words+=len(subtitle_text_in_interval.split(' '))
subtitle_text_in_interval = ""
frame_count += 1
# Break the loop if the maximum number of images is reached
if len(images) >= max_images_length:
break
cap.release()
cv2.destroyAllWindows()
# Return None if no images are extracted
if len(images) == 0:
return None, None
while len(images) < max_images_length:
images.append(images[-1])
img_placeholder += '<Img><ImageHere>'
images = torch.stack(images)
print("Input instruction length",len(instruction.split(' ')))
instruction = img_placeholder + '\n' + instruction
print("number of words",number_of_words)
print("number of images",len(images))
return images, instruction,conversation
def extract_audio(self, video_path: str, audio_path: str) -> None:
video_clip = mp.VideoFileClip(video_path)
audio_clip = video_clip.audio
audio_clip.write_audiofile(audio_path, codec="libmp3lame", bitrate="320k")
def short_video_inference (self,video_path,instruction,gen_subtitles=True):
if gen_subtitles:
subtitle_path=self.get_subtitles(video_path)
else :
subtitle_path=None
prepared_images,prepared_instruction,video_conversation=self.prepare_input(video_path,subtitle_path,instruction)
if prepared_images is None:
return "Video cann't be open ,check the video path again"
length=len(prepared_images)
prepared_images=prepared_images.unsqueeze(0)
conv = CONV_VISION.copy()
conv.system = ""
# if you want to make conversation comment the 2 lines above and make the conv is global variable
conv.append_message(conv.roles[0], prepared_instruction)
conv.append_message(conv.roles[1], None)
prompt = [conv.get_prompt()]
answers = self.model.generate(prepared_images, prompt, max_new_tokens=512, do_sample=False, lengths=[length],num_beams=1)
return answers[0]
def split_long_video_into_clips(self,video_path):
# Split the video into 90 seconds clips and make a queue of the videos and run the inference on each video
self.video_name=video_path.split('/')[-1].split('.')[0]
tmp_save_path=f"workspace/tmp/{self.video_name}"
os.makedirs(tmp_save_path, exist_ok=True)
print("tmp_save_path",tmp_save_path)
if len(os.listdir(tmp_save_path)) == 0:
print("Splitting Long video")
os.system(f"python split_long_video_in_parallel.py --video_path {video_path} --output_folder {tmp_save_path}")
# split_video(video_path, tmp_save_path, clip_duration=90)
videos_list = sorted(os.listdir(tmp_save_path))
return videos_list,tmp_save_path
def long_inference_video(self, videos_list,tmp_save_path,subtitle_paths) -> Optional[str]:
save_long_videos_path = "new_workspace/clips_summary/demo"
os.makedirs(save_long_videos_path, exist_ok=True)
file_path = f'{save_long_videos_path}/{self.video_name}.json'
if os.path.exists(file_path):
print("Clips inference already done")
with open(file_path, 'r') as file:
video_information = json.load(file)
else:
video_number = 0
batch_size = self.args.batch_size
batch_video_paths, batch_instructions ,batch_subtitles= [], [],[]
video_information = {}
video_captions = []
for i, video in tqdm(enumerate(videos_list), desc="Inference video clips", total=len(videos_list)):
clip_path = os.path.join(tmp_save_path, video)
batch_video_paths.append(clip_path)
# previous_caption = "You are analysing a one long video of mutiple clips and this is the summary from all previous clips :"+video_captions[-1]+"\n\n" if video_captions else ""
previous_caption=""
batch_instructions.append(self.summary_instruction)
batch_subtitles.append(subtitle_paths[i])
# Process each batch
if len(batch_video_paths) % batch_size == 0 and i != 0:
batch_preds,videos_conversation=self.run_batch(batch_video_paths,batch_instructions, batch_subtitles,previous_caption)
for pred,subtitle in zip(batch_preds,videos_conversation):
video_number += 1
save_name=f"{video_number}".zfill(5)
if pred != "":
video_information[f'caption__{save_name}'] = pred
if subtitle != "":
video_information[f'subtitle__{save_name}'] = subtitle
video_captions.append(pred)
batch_video_paths, batch_instructions,batch_subtitles = [], [],[]
# Process any remaining videos in the last batch
if batch_video_paths:
batch_preds,videos_conversation=self.run_batch(batch_video_paths,batch_instructions, batch_subtitles,previous_caption)
for pred,subtitle in zip(batch_preds,videos_conversation):
video_number += 1
save_name=f"{video_number}".zfill(5)
if pred != "":
video_information[f'caption__{save_name}'] = pred
if subtitle != "":
video_information[f'subtitle__{save_name}'] = subtitle
video_captions.append(pred)
with open(file_path, 'w') as file:
json.dump(video_information, file, indent=4)
print("Clips inference done")
return video_information
# def inference_RAG(self, instructions, context_list):
# context_promots=[]
# questions_prompts=[]
# try:
# for instruction,context in zip(instructions,context_list):
# context=clean_text(context)
# context_prompt=f"<s>[INST] Your task is to answer questions for one long video which is split into multiple clips.\nGiven these related information from the most related clips: \n{context}\n"
# question_prompt=f"\nAnswer this question :{instruction} \n your answer is: [/INST]"
# context_promots.append(context_prompt)
# questions_prompts.append(question_prompt)
# context_inputs = self.original_llama_tokenizer(context_promots, return_tensors="pt", padding=True, truncation=True,max_length=3500)
# # print(context_inputs.keys())
# print("context_inputs shape",context_inputs['input_ids'].shape)
# question_inputs = self.original_llama_tokenizer(questions_prompts, return_tensors="pt", padding=True, truncation=True,max_length=300)
# print("question_inputs shape",question_inputs['input_ids'].shape)
# # concate the context and the question together
# inputs_ids=torch.cat((context_inputs['input_ids'],question_inputs['input_ids']),dim=1).to('cuda')
# print("inputs shape",inputs_ids.shape)
# except Exception as e:
# print("error while tokenization",e)
# return self.inference_RAG_batch_size_1(instructions, context_list)
# with torch.no_grad():
# summary_ids = self.original_llama_model.generate(inputs_ids,max_new_tokens=512)
# answers=[]
# for i in range(len(summary_ids)):
# output_text=self.original_llama_tokenizer.decode(summary_ids[i], skip_special_tokens=True)
# output_text = output_text.split('</s>')[0] # remove the stop sign </s>
# output_text = output_text.replace("<s>", "")
# output_text = output_text.split(r'[/INST]')[-1].strip()
# answers.append(output_text)
# return answers
def inference_RAG(self, instructions, context_list):
messages=[]
for instruction,context in zip(instructions,context_list):
context=clean_text(context)
context_prompt=f"Your task is to answer a specific question based on one long video. While you cannot view the video yourself, I will supply you with the most relevant text information from the most pertinent clips. \n{context}\n"
question_prompt=f"\nPlease provide a detailed and accurate answer to the following question:{instruction} \n Your answer should be:"
# limit the context words to 10000 word duo to hardware limitation
context_words=context_prompt.split(' ')
truncated_context=' '.join(context_words[:10000])
print("Number of words",len((truncated_context+question_prompt).split(' ')))
messages.append([{"role": "user", "content": truncated_context+question_prompt}])
outputs=self.llama_3_1_model(messages, max_new_tokens=512)
answers=[]
for out in outputs:
answers.append(out[0]["generated_text"][-1]['content'])
return answers
# def inference_RAG(self, instructions, context_list):
# prompts=[]
# for instruction,context in zip(instructions,context_list):
# context=clean_text(context)
# context_prompt=f"Your task is to answer questions for one long video which is split into multiple clips.\nGiven these related information from the most related clips: \n{context}\n"
# question_prompt=f"\nAnswer this question :{instruction} \n your answer is:"
# prompts.append(context_prompt+question_prompt)
# with open('prompts.txt','w') as f:
# for prompt in prompts:
# f.write(prompt+'\n')
# outputs=self.original_llama_model.generate(prompts)
# answers=[]
# for out in outputs:
# answers.append(out.outputs[0].text)
# return answers
def inference_RAG_batch_size_1(self, instructions, context_list):
answers=[]
for instruction,context in zip(instructions,context_list):
context=clean_text(context)
context_prompt=f"<s>[INST] Your task is to answer questions for one long video which is split into multiple clips.\nGiven these related information from the most related clips: \n{context}\n"
question_prompt=f"\nAnswer this question :{instruction} \n your answer is: [/INST]"
context_inputs=self.original_llama_tokenizer([context_prompt], return_tensors="pt", padding=True, truncation=True,max_length=3500)['input_ids']
question_inputs=self.original_llama_tokenizer([question_prompt], return_tensors="pt", padding=True, truncation=True,max_length=300)['input_ids']
inputs_ids=torch.cat((context_inputs,question_inputs),dim=1).to('cuda')
with torch.no_grad():
summary_ids = self.original_llama_model.generate(inputs_ids,max_new_tokens=512,)
output_text=self.original_llama_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
output_text = output_text.split('</s>')[0] # remove the stop sign </s>
output_text = output_text.replace("<s>", "")
output_text = output_text.split(r'[/INST]')[-1].strip()
answers.append(output_text)
return answers
# def inference_RAG_text_only(self, instructions, context_list):
# # Use VideoLLM as the answer module
# seg_tokens=[]
# for instruction,context in zip(instructions,context_list):
# context=clean_text(context)
# context_prompt=f"<s>[INST] Your task is to answer questions for one long video which is split into multiple clips.\nGiven these related information from the most related clips: \n{context}\n"
# question_prompt=f"\nAnswer this question :{instruction} \n your answer is: [/INST]"
# context_inputs = self.model.llama_tokenizer(context_prompt,add_special_tokens=True, return_tensors="pt", padding=True, truncation=True,max_length=3500)
# question_inputs = self.model.llama_tokenizer(question_prompt, return_tensors="pt", padding=True, truncation=True,max_length=300)
# # concate the context and the question together
# inputs_ids=torch.cat((context_inputs['input_ids'],question_inputs['input_ids']),dim=1).to('cuda')
# seg_tokens.append(inputs_ids)
# with torch.no_grad():
# answers = self.model.generate_text_only(images=None,seg_tokens=seg_tokens,max_new_tokens=512)
# return answers
def inference_RAG_chatGPT(self, instructions: str, context_list) -> str:
batch_preds=[]
for context,instruction in zip(context_list,instructions):
prompt="Your task is to answer questions for long video \n\n Given these related information from the most related clips: \n "+context +"\n\n" +"Answer this question: "+instruction
while True:
try:
response = client.ChatCompletion.create(
model="gpt-4o",
messages=[
{
"role": "user",
"content": prompt
}],
)
answer=response.choices[0].message['content']
batch_preds.append(answer)
break
except Exception as e:
print("chat gpt error",e)
time.sleep(50)
return batch_preds
def get_most_related_clips(self,related_context_keys):
most_related_clips=set()
for context_key in related_context_keys:
if len(context_key.split('__'))>1:
most_related_clips.add(context_key.split('__')[1])
if len(most_related_clips)==self.args.neighbours:
break
assert len(most_related_clips)!=0, f"No related clips found {related_context_keys}"
return list(most_related_clips)
def get_related_context(self, external_memory,related_context_keys):
related_information=""
most_related_clips=self.get_most_related_clips(related_context_keys)
for clip_name in most_related_clips:
clip_conversation=""
general_sum=""
for key in external_memory.documents.keys():
if clip_name in key and 'caption' in key:
general_sum="Clip Summary: "+external_memory.documents[key]
if clip_name in key and 'subtitle' in key:
clip_conversation="Clip Subtitles: "+external_memory.documents[key]
related_information+=f"{general_sum},{clip_conversation}\n"
return related_information
def inference(self,video_path, use_subtitles=True, instruction="", number_of_neighbours=3):
start_time = time.time()
video_name = os.path.splitext(os.path.basename(video_path))[0]
self.args.neighbours = number_of_neighbours
print(f"Video name: {video_name}")
video_duration = mp.VideoFileClip(video_path).duration
print(f"Video duration: {video_duration:.2f} seconds")
# if the video duration is more than 2 minutes we need to run the long inference
if video_duration > 180 :
print("Long video")
# if the video data is already stored in the external memory, we can use it directly else we need to run the long inference
file_path=f'new_workspace/clips_summary/demo/{video_name}.json'
if not os.path.exists(file_path):
print("Clips summary is not ready")
videos_list,tmp_save_path=self.split_long_video_into_clips(video_path)
subtitle_paths = []
for video_p in videos_list:
clip_path = os.path.join(tmp_save_path, video_p)
subtitle_path = self.get_subtitles(clip_path) if use_subtitles else None
subtitle_paths.append(subtitle_path)
clips_summary = self.long_inference_video(videos_list,tmp_save_path,subtitle_paths)
else:
print("External memory is ready")
os.makedirs("new_workspace/embedding/demo", exist_ok=True)
os.makedirs("new_workspace/open_ai_embedding/demo", exist_ok=True)
if self.args.use_openai_embedding:
embedding_path=f"new_workspace/open_ai_embedding/demo/{video_name}.pkl"
else:
embedding_path=f"new_workspace/embedding/demo/{video_name}.pkl"
external_memory=MemoryIndex(self.args.neighbours,use_openai=self.args.use_openai_embedding)
if os.path.exists(embedding_path):
print("Loading embeddings from pkl file")
external_memory.load_embeddings_from_pkl(embedding_path)
else:
# will embed the information and save it in the pkl file
external_memory.load_documents_from_json(file_path,embedding_path)
# get the most similar context from the external memory to this instruction
related_context_documents,related_context_keys = external_memory.search_by_similarity(instruction)
related_information=self.get_related_context(external_memory,related_context_keys)
pred=self.inference_RAG([instruction],[related_information])
else:
print("Short video")
self.video_name=video_path.split('/')[-1].split('.')[0]
pred=self.short_video_inference(video_path,instruction,use_subtitles)
processing_time = time.time() - start_time
print(f"Processing time: {processing_time:.2f} seconds")
return {
'video_name': os.path.splitext(os.path.basename(video_path))[0],
'pred': pred,
}
def run_batch(self, video_paths, instructions,subtitle_paths,previous_caption="") -> List[str]:
prepared_images_batch = []
prepared_instructions_batch = []
lengths_batch = []
videos_conversations=[]
for i,video_path, instruction in zip(range(len(video_paths)),video_paths, instructions):
subtitle_path = subtitle_paths[i]
prepared_images, prepared_instruction,video_conversation = self.prepare_input( video_path, subtitle_path, instruction,previous_caption)
if prepared_images is None:
print(f"Error: Unable to open video at {video_path}. Check the path and try again.")
continue
videos_conversations.append(video_conversation)
conversation = CONV_VISION.copy()
conversation.system = ""
conversation.append_message(conversation.roles[0], prepared_instruction)
conversation.append_message(conversation.roles[1], None)
prepared_instructions_batch.append(conversation.get_prompt())
prepared_images_batch.append(prepared_images)
lengths_batch.append(len(prepared_images))
if not prepared_images_batch:
return []
prepared_images_batch = torch.stack(prepared_images_batch)
answers=self.model.generate(prepared_images_batch, prepared_instructions_batch, max_new_tokens=self.args.max_new_tokens, do_sample=False, lengths=lengths_batch, num_beams=1)
return answers , videos_conversations
def run_images_features (self,img_embeds,prepared_instruction):
lengths=[]
prompts=[]
for i in range(img_embeds.shape[0]):
conv = CONV_VISION.copy()
conv.system = ""
conv.append_message(conv.roles[0], prepared_instruction[i])
conv.append_message(conv.roles[1], None)
prompts.append(conv.get_prompt())
lengths.append(len(img_embeds[i]))
answers = self.model.generate(images=None,img_embeds=img_embeds,texts=prompts, max_new_tokens=300, do_sample=False, lengths=lengths,num_beams=1)
return answers
def run_images (self,prepared_images,prepared_instruction):
lengths=[]
prompts=[]
for i in range(prepared_images.shape[0]):
conv = CONV_VISION.copy()
conv.system = ""
conv.append_message(conv.roles[0], prepared_instruction[i])
conv.append_message(conv.roles[1], None)
prompts.append(conv.get_prompt())
lengths.append(len(prepared_images[i]))
answers = self.model.generate(prepared_images, prompts, max_new_tokens=300, do_sample=False, lengths=lengths,num_beams=1)
return answers