forked from VishwamAI/chat-agent
-
Notifications
You must be signed in to change notification settings - Fork 0
/
integrate_text2text_model.sh
49 lines (39 loc) · 3.12 KB
/
integrate_text2text_model.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#!/bin/bash
# Script to integrate a text-to-text generation model into the Vishwamai model
# Step 1: Clone the repository
echo "Cloning the chat-agent repository..."
git clone https://github.com/VishwamAI/chat-agent.git
cd chat-agent
# Step 2: Install the required packages
echo "Installing required packages..."
pip install -r requirements.txt
# Step 3: Set up Hugging Face API token
echo "Setting up Hugging Face API token..."
export HUGGING_FACE_TOKEN=your_hugging_face_token
# Step 4: Clone the text-to-text generation model repository
echo "Cloning the google/flan-t5-base model repository..."
git clone https://huggingface.co/google/flan-t5-base
# Step 5: Integrate the model into the Vishwamai model
echo "Integrating the google/flan-t5-base model into the Vishwamai model..."
# Copy necessary files from the cloned model repository to the Vishwamai model directory
cp -r flan-t5-base/* vishwamai/
# Step 6: Update the Vishwamai model code to use the integrated model
echo "Updating the Vishwamai model code..."
# Modify the model.py file to include the integrated model
sed -i 's/from vishwamai.config import GemmaConfig, get_model_config/from vishwamai.config import VishwamaiConfig, get_model_config/' vishwamai/model.py
sed -i 's/class GemmaMLP(nn.Module):/class VishwamaiMLP(nn.Module):/' vishwamai/model.py
sed -i 's/class GemmaAttention(nn.Module):/class VishwamaiAttention(nn.Module):/' vishwamai/model.py
sed -i 's/class GemmaDecoderLayer(nn.Module):/class VishwamaiDecoderLayer(nn.Module):/' vishwamai/model.py
sed -i 's/class Gemma2DecoderLayer(nn.Module):/class Vishwamai2DecoderLayer(nn.Module):/' vishwamai/model.py
sed -i 's/class GemmaModel(nn.Module):/class VishwamaiModel(nn.Module):/' vishwamai/model.py
sed -i 's/class GemmaForCausalLM(nn.Module):/class VishwamaiForCausalLM(nn.Module):/' vishwamai/model.py
# Step 7: Update the README.md file
echo "Updating the README.md file..."
# Add instructions for using the integrated model
echo -e "\n## Using the Integrated Model\n\nTo use the integrated google/flan-t5-base model, follow the instructions below:\n\n1. Clone the repository:\n \`\`\`\n git clone https://github.com/VishwamAI/chat-agent.git\n cd chat-agent\n \`\`\`\n\n2. Install the required packages:\n \`\`\`\n pip install -r requirements.txt\n \`\`\`\n\n3. Set up the Hugging Face API token:\n \`\`\`\n export HUGGING_FACE_TOKEN=your_hugging_face_token\n \`\`\`\n\n4. Train the model:\n \`\`\`\n python scripts/train.py\n \`\`\`\n\n5. Generate text:\n \`\`\`\n python scripts/generate_text.py --prompt \"Your prompt here\" --max_length 100\n \`\`\`\n\n6. Evaluate the model:\n \`\`\`\n python scripts/evaluate.py --test_file path/to/test/file.txt\n \`\`\`\n\n7. Test sampling parameters:\n \`\`\`\n python scripts/sampling_test.py --prompt \"Your prompt here\" --temperature 0.7 --top_p 0.9 --top_k 50\n \`\`\`\n" >> README.md
# Step 8: Commit and push the changes
echo "Committing and pushing the changes..."
git add .
git commit -m "Integrated google/flan-t5-base model into Vishwamai model"
git push origin main
echo "Integration complete. Please review the changes and test the integrated model."