Skip to content

Commit adfc720

Browse files
Merge pull request #80 from VincentAuriau/enh/rm
ReadMe enhancement
2 parents 28268af + 885a125 commit adfc720

File tree

2 files changed

+8
-5
lines changed

2 files changed

+8
-5
lines changed

README.md

Lines changed: 8 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,6 @@
1-
# Tennis-Prediction Repository
1+
# Tennis-Prediction
2+
3+
<img align="right" width="200" src="./robot.png" />
24

35
The goal of this project is to predict the outcome of a tennis match using the data of both players and ML models.\
46
The data used comes from [Jeff Sackmann's repository](https://github.com/JeffSackmann).
@@ -8,7 +10,7 @@ The data used comes from [Jeff Sackmann's repository](https://github.com/JeffSac
810
- [Data Loading](#data-loading)
911
- [Machine Learning modelling](#ml-modelling)
1012
- [Encoding Matches](#encoding-matches)
11-
- License
13+
- [License](#license)
1214

1315
## Installation
1416

@@ -72,6 +74,7 @@ Here is an example of a data row:
7274
- **bpSaved_1:** Number of break points saved
7375
- **bpFaced_1:** Number of break points faced
7476

77+
<ins>Example of match statistics:</ins>
7578

7679
| Name_1 | ID_1 | Ranking_1 | Ranking_Points_1 | Ranking_History_1 | Best_Rank_1 | Birth_Year_1 | Versus_1 | Hand_1 | Last_Tournament_Date_1 | Height_1 | Matches_1 | Matchs_Clay_1 | Matches_Carpet_1 | Matches_Grass_1 | Matches_Hard_1 | Victories_Percentage_1 | Clay_Victories_Percentage_1 | Carpet_Victories_Percentage_1 | Grass_Victories_Percentage_1 | Hard_Victories_Percentage_1 | Aces_Percentage_1 | Doublefaults_Percentage_1 | First_Save_Success_Percentage_1 | Winning_on_1st_Serve_Percentage_1 | Winning_on_2nd_Serve_Percentage_1 | Overall_Win_on_Serve_Percentage_1 | BreakPoint_Face_Percentage_1 | BreakPoint_Saved_Percentage_1 | last_rankings_1 | last_ranking_points_1 |
7780
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
@@ -115,9 +118,9 @@ Here is an example of a data row:
115118
- **last_rankings_x:** Five previous recorded ATP rankings
116119
- **last_ranking_points_x:** Five previous ATP ranking points recorded
117120

118-
### ML modelling
121+
### Machine-Learning modelling
119122
Train/Testing on matches outcome
120-
[[Example](examples/models/train_test.py)].
123+
[[Example]](examples/models/train_test.py).
121124

122125
A generic function lets you evaluate your model with a train/test scheme without much work. Your model only needs a scikit-learn like signature.
123126
By playing with the years, columns to use in modelling and models & hyperparmaters, you can easily create your own best-performing model.
@@ -144,7 +147,7 @@ print("Test Score", test_score)
144147

145148
Models and hyperparamters can easily be compared with the file results.csv saved in save_path.
146149

147-
Different models performances
150+
Accuracy of different models
148151
:-------------------------:
149152
![](examples/results_reading/models_performances.png)
150153

robot.png

557 KB
Loading

0 commit comments

Comments
 (0)