Iter 100 time=0.50 loss=13041.66 active=44611 precision=0.825 recall=0.821 F1=0.823 Acc(item/seq)=0.985 0.685 feature_norm=244.48
================================================
Label Precision Recall F1 Support
------- ----------- -------- ----- ---------
+ 0.000 0.000 0.000 1
. 1.000 0.999 0.999 6497
1 0.875 0.865 0.870 1204
a 0.931 0.914 0.922 5998
n 0.984 0.990 0.987 36536
o 0.993 0.990 0.991 18203
v 0.992 0.991 0.992 28678
------------------------------------------------
Total seconds required for training: 55.427
Number of active features: 44611 (229357)
Number of active attributes: 26337 (169958)
Number of active labels: 7 (7)
Train set num sentences: 14914
Performance on training set: 0.9954870609388043
Test set num sentences: 3729
Performance on test set: 0.9846267903662592
pos_tag
Folders and files
Name | Name | Last commit date | ||
---|---|---|---|---|
parent directory.. | ||||