-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvector_pool.py
68 lines (55 loc) · 1.87 KB
/
vector_pool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import argparse
import os
os.environ['CUDA_VISIBLE_DEVICES']='0'
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from datasets import load_dataset
from tqdm import tqdm
from transformers import AutoTokenizer, LlamaForCausalLM, Qwen2ForCausalLM
from utils import *
random.seed(42)
# model_name = "/data1/chh/models/meta-llama/Meta-Llama-3-8B-Instruct"
model_name='/data1/chh/models/Qwen/Qwen2-1.5B-Instruct'
model = Qwen2ForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to("cuda")
tokenizer = AutoTokenizer.from_pretrained(model_name)
def extract_hidden_states(input_text):
# Tokenize input
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
# Forward pass to get hidden states
with torch.no_grad():
outputs = model(**inputs, output_hidden_states=True)
# Get hidden states from all layers
hidden_states = outputs.hidden_states
return hidden_states
constraints=None
feature=[]
with open('./dataset/multi_constraints_5000.json','r') as f:
constraints=json.load(f)
for c in range(0,len(constraints)):
temp={}
temp[c]=[]
for i in constraints[c].keys():
if 'Constraints' in i:
for j in constraints[c][i]:
for k,v in j.items():
temp[c].append(v)
feature.append(temp)
# print(feature)
# print(len(feature))
pool=[]
for sample in tqdm(feature):
# print(sample)
temp={}
for k,v in sample.items():
temp[k]=[]
for i in v:
input_text = prompt_template(tokenizer,i)
hidden_states = extract_hidden_states(input_text)
hidden_states=torch.stack(hidden_states)[:,0,-1].to('cpu')
temp[k].append(hidden_states)
pool.append(temp)
save_path = "./pool/train_vectors_5000_qwen.pt"
torch.save(pool, save_path)
print(f"Task vectors saved to {save_path}")