-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmoe_ctg.py
164 lines (139 loc) · 6.4 KB
/
moe_ctg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import argparse
import os
os.environ['CUDA_VISIBLE_DEVICES']='1'
import copy
import logging
from dataclasses import dataclass, field
from typing import Any, Dict, Optional, Sequence, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
import transformers
from datasets import load_dataset
from model import MoeModel
from peft import LoraConfig, TaskType
# import wandb
from torch.utils.data import DataLoader, Dataset
from transformers import (AdamW, AutoModelForCausalLM, AutoTokenizer,
LlamaForCausalLM, LlamaForCausalLM_Moe, Trainer,
TrainerCallback, get_linear_schedule_with_warmup)
from trl import SFTConfig, SFTTrainer
from utils import *
import wandb
device = torch.device("cuda")
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="/data1/chh/models/meta-llama/Meta-Llama-3-8B-Instruct")
@dataclass
class DataArguments:
data_path: str = field(default='/home/chh/repos/moe_ctg/dataset/multi_constraints_dataset_5000.jsonl', metadata={"help": "Path to the training data."})
@dataclass
class TrainingArguments(transformers.TrainingArguments):
model_max_length: int = field(
default=512,
metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."},
)
do_train: bool = field(
default=True
)
per_device_train_batch_size: int = field(
default=2
)
num_train_epochs: float = field(
default=2
)
learning_rate: float = field(
default=1e-4
)
seed: int = field(
default=42
)
do_train: bool = field(
default= True
)
do_predict: bool = field(
default=False
)
output_dir: str = field(
default='/home/chh/repos/moe_ctg/model_ckpt'
)
vector_pool_path: str = field(
default='/home/chh/repos/moe_ctg/pool/train_vectors_5000.pt',
metadata={"help": "Path to the vector pool file."}
)
gate_model_path: str = field(
default='',
metadata={"help": "Path to the saved MOE model checkpoint."}
)
inf_max_length: int = field(
default=1024,
metadata={"help": "Maximum length for inference."}
)
gradient_accumulation_steps: int = field(
default=1
)
remove_unused_columns:int = field(
default=False
)
report_to: str = field(
default="wandb"
)
save_strategy: str=field(
default="no", metadata={"help": "Save model every epoch"}
)
logging_steps: float=field(
default=10.0
)
bf16: bool=field(
default=True,
)
gradient_checkpointing:bool=field(
default=False
)
def main(model_args, data_args, training_args):
constraint_types=['content', 'situation', 'style', 'format', 'example', 'mixed']
if training_args.do_train:
wandb.init(project='moe_ctg',config={"learning_rate": training_args.learning_rate,"epochs": training_args.num_train_epochs,"total batch size": training_args.per_device_train_batch_size*training_args._n_gpu})
vector_pool=torch.load(training_args.vector_pool_path)
model = LlamaForCausalLM_Moe.from_pretrained(model_args.model_name_or_path,torch_dtype=torch.bfloat16).to(device)
model.init_pool(vector_pool)
# optimizer = AdamW(params=[p for name, p in model.named_parameters() if 'model.layers.20.MOE_gate' in name], lr=training_args.learning_rate,weight_decay=1e-5)
# scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=10, num_training_steps=training_args.max_steps)
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path,padding_side='right')
tokenizer.pad_token_id = tokenizer.eos_token_id if tokenizer.pad_token_id is None else tokenizer.pad_token_id
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)
trainer = Trainer(model=model, tokenizer=tokenizer, args=training_args, **data_module)
trainer.train()
save_moe_gate_params(model, training_args.output_dir)
wandb.finish()
elif training_args.do_predict=='eval':
model = LlamaForCausalLM.from_pretrained(model_args.model_name_or_path,torch_dtype=torch.bfloat16).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_args.model_path,padding_side='left')
tokenizer.pad_token_id = tokenizer.eos_token_id if tokenizer.pad_token_id is None else tokenizer.pad_token_id
model = MoeModel(model,tokenizer)
model.eval()
for constraint in constraint_types:
vector_pool=torch.load('./pool/{}_constraint_split.pt'.format(constraint))
run_results = []
test_data=[]
with open(os.path.join("/home/chh/repos/my_ctg/instructions/followbench2/{}_constraint.jsonl".format(constraint)), 'r', encoding='utf-8') as test_file:
for idx,line in enumerate(tqdm(test_file, desc=f"Processing {constraint}", unit="line")):
model.set_vector_pool(vector_pool[idx][idx])
temp_dict = json.loads(line.strip())
prompt=temp_dict['prompt_new']
prompt_tem=prompt_template(tokenizer,prompt)
test_data.append({'prompt_new':prompt,'prompt_input':prompt_tem})
for idx,item in enumerate(tqdm(test_data, desc=f"Processing {constraint}")):
inputs = tokenizer(item['prompt_input'], return_tensors="pt").to(device)
generation_output=model.generate(**inputs,max_new_tokens=training_args.inf_max_length,use_cache=False)
res=tokenizer.decode(generation_output[0], skip_special_tokens=True)
run_results.append({'prompt_new':item['prompt_new'],'result': res})
print(res)
with open(os.path.join(training_args.output_dir, f"{os.path.basename(model_args.model_name_or_path)}_{constraint}_constraint.jsonl"), 'w', encoding='utf-8') as output_file:
for d in run_results:
output_file.write(json.dumps(d) + "\n")
if __name__ == "__main__":
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
set_seed(training_args)
main(model_args,data_args,training_args)