-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
254 lines (209 loc) · 9.52 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# wrapping classes
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
device = torch.device("cuda")
class MoeMLP(nn.Module):
def __init__(self, input_dim=4096, output_dim=7, hidden_dims=512):
super(MoeMLP, self).__init__()
layers = []
layers.append(nn.LayerNorm(input_dim))
layers.append(nn.Linear(input_dim, hidden_dims))
layers.append(nn.ReLU())
layers.append(nn.Dropout(p=0.5)) # Dropout
layers.append(nn.Linear(hidden_dims, output_dim))
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class WrappedBlock(torch.nn.Module):
def __init__(self, block,layer_idx):
super().__init__()
self.block = block
self.output = None
self.vector_pool = None
self.token_pos = -1
self.sample_ids=None
self.MOE_gate = nn.Linear(4096, 6 + 1).to(device).to(torch.bfloat16)
# self.MOE_gate=MoeMLP().to(device).to(torch.bfloat16)
self.layer_idx=layer_idx
def forward(self, *args, **kwargs):
# if self.layer_idx==18:
# print(self.MOE_gate.weight.data)
# print(self.MOE_gate.bias.data)
if self.layer_idx==18:
for name, p in self.block.named_parameters():
print(name,p)
output = self.block(*args, **kwargs)
# if isinstance(output, tuple):
# self.output = output[0]
# modified = output[0]
# else:
# self.output = output
# modified = output
# # handle the activation
# batch_size, seq_len, hidden_dim = modified.size()
# token_activation = modified[:, self.token_pos, :].to(modified.device) # (batch_size, hidden_dim)
# gate_scores = self.MOE_gate(token_activation)
# # gate_scores = gate_scores / torch.norm(gate_scores, dim=-1, keepdim=True)
# # print("gate scores:",gate_scores)
# gate_probs = F.softmax(gate_scores, dim=-1)
# modified = modified.clone()
# for b in range(batch_size):
# vectors_from_pool = self.vector_pool[b][:, self.layer_idx].to(modified.device)
# if vectors_from_pool.size(0) < 6:
# pad_size = 6 - vectors_from_pool.size(0)
# padding = torch.zeros((pad_size, hidden_dim), device=vectors_from_pool.device, dtype=vectors_from_pool.dtype)
# vectors_from_pool = torch.cat((vectors_from_pool, padding), dim=0)
# elif vectors_from_pool.size(0) > 6:
# perm = torch.randperm(vectors_from_pool.size(0))[:6]
# vectors_from_pool = vectors_from_pool[perm]
# combined_vector = torch.cat((vectors_from_pool, token_activation[b].unsqueeze(0)), dim=0) # (7, hidden_dim)
# new_vector = torch.matmul(gate_probs[b], combined_vector)
# modified[b, self.token_pos, :] = new_vector
# # self.token_pos-=1
# if isinstance(output, tuple):
# output = (modified,) + output[1:]
# else:
# output = modified
return output
def set_pool(self,pool):
if not isinstance(pool,dict):
if isinstance(pool,torch.Tensor):
if pool.dim()<4:
pool=pool.unsqueeze(0)
self.vector_pool=pool
def reset(self):
self.output = None
self.vector_pool = None
self.token_pos = -1
self.sample_ids=None
self.layer_idx=None
def reset_token_pos(self):
self.token_pos=-1
BLOCK_NAMES = [
"self_attn",
"mlp",
"input_layernorm",
"post_attention_layernorm"
]
def print_block_gradients(layer_idx):
def hook(module, grad_input, grad_output):
if layer_idx==18:
print(grad_input)
print(grad_output)
# print('layer id',layer_idx)
# print(grad_output)
return hook
class MoeModel(torch.nn.Module):
def __init__(self, model, tokenizer):
super().__init__()
self.model = model
self.tokenizer = tokenizer
self.wrap_all_decoder()
self.model.generation_config.pad_token_id = tokenizer.pad_token_id
def forward(self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,**kwargs):
return self.model(input_ids,attention_mask,labels, **kwargs)
def generate(self, **kwargs):
for layer_id, layer in enumerate(self.model.model.layers):
layer.reset_token_pos()
return self.model.generate(**kwargs)
def get_logits(self, tokens):
with torch.no_grad():
logits = self.model(tokens.to(self.model.device)).logits
return logits
def run_prompt(self, prompt, **kwargs):
with torch.no_grad():
inputs = self.tokenizer(prompt, return_tensors="pt", padding=True, max_length=512, truncation=True)
input_ids = inputs.input_ids.to(self.model.device)
attention_mask = inputs.attention_mask.to(self.model.device)
output = self.model(input_ids, attention_mask=attention_mask)
return output
def wrap(self, layer_id, block_name):
assert block_name in BLOCK_NAMES
if self.is_wrapped(self.model.model.layers[layer_id]):
block = getattr(self.model.model.layers[layer_id].block, block_name)
if not self.is_wrapped(block):
setattr(self.model.model.layers[layer_id].block, block_name, WrappedBlock(block))
else:
block = getattr(self.model.model.layers[layer_id], block_name)
if not self.is_wrapped(block):
setattr(self.model.model.layers[layer_id], block_name, WrappedBlock(block))
def wrap_decoder_block(self, layer_id):
block = self.model.model.layers[layer_id]
if not self.is_wrapped(block):
self.model.model.layers[layer_id] = WrappedBlock(block,layer_id+1)
def wrap_all_decoder(self):
for layer_id, layer in enumerate(self.model.model.layers):
# for block_name in BLOCK_NAMES:
# self.wrap(layer_id, block_name)
# if layer_id==18:
self.wrap_decoder_block(layer_id)
def wrap_block(self, layer_ids, block_name):
def _wrap_block(layer_id, block_name):
if block_name in BLOCK_NAMES:
self.wrap(layer_id, block_name)
elif block_name == 'decoder_block':
self.wrap_decoder_block(layer_id)
else:
assert False, f"No block named {block_name}."
if isinstance(layer_ids, list) or isinstance(layer_ids, tuple) or isinstance(layer_ids, np.ndarray):
for layer_id in layer_ids:
_wrap_block(layer_id, block_name)
else:
_wrap_block(layer_ids, block_name)
def reset(self):
for layer in self.model.model.layers:
if self.is_wrapped(layer):
layer.reset()
for block_name in BLOCK_NAMES:
if self.is_wrapped(getattr(layer.block, block_name)):
getattr(layer.block, block_name).reset()
else:
for block_name in BLOCK_NAMES:
if self.is_wrapped(getattr(layer, block_name)):
getattr(layer, block_name).reset()
def is_wrapped(self, block):
if hasattr(block, 'block'):
return True
return False
def unwrap(self):
for l, layer in enumerate(self.model.model.layers):
if self.is_wrapped(layer):
self.model.model.layers[l] = layer.block
for block_name in BLOCK_NAMES:
if self.is_wrapped(getattr(self.model.model.layers[l], block_name)):
setattr(self.model.model.layers[l],
block_name,
getattr(self.model.model.layers[l], block_name).block)
def set_vector_pool(self,vector):
for layer_id, layer in enumerate(self.model.model.layers):
if self.is_wrapped(layer):
layer.set_pool(vector)
layer.reset_token_pos()
def freeze_model_params(self):
for name, param in self.model.named_parameters():
param.requires_grad = False
for layer in self.model.model.layers:
if isinstance(layer, WrappedBlock):
for name, param in layer.named_parameters():
if 'MOE_gate' in name:
param.requires_grad = True
def load_gate_weights(self, gate_weights_path):
checkpoint = torch.load(gate_weights_path, map_location=device)
for layer_id, layer in enumerate(self.model.model.layers):
if isinstance(layer, WrappedBlock):
gate_name = f"model.model.layers.{layer_id}.gate"
if gate_name in checkpoint:
layer.MOE_gate.load_state_dict(checkpoint[gate_name])
print(f"Loaded gate weights for layer {layer_id}")
else:
print(f"No gate weights found for layer {layer_id}")
def register_hooks_for_gate(self):
for layer in self.model.model.layers:
if isinstance(layer, WrappedBlock):
layer.MOE_gate.register_full_backward_hook(print_block_gradients(layer.layer_idx))