Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

AttributeError: 'Patches' object has no attribute 'permute' #63

Open
habeebp098 opened this issue Jun 5, 2024 · 1 comment
Open

AttributeError: 'Patches' object has no attribute 'permute' #63

habeebp098 opened this issue Jun 5, 2024 · 1 comment

Comments

@habeebp098
Copy link

I have been experimenting with the alpha-beta-crown tool and encountered the following error while running it for some input data.

alpha-beta-crown) h@pillar1:~/project3/project3_2$ python /home/h/project2/alpha-beta-CROWN-main/complete_verifier/abcrown.py --onnx_path net.onnx --vnnlib_path prop_y0.vnnlb --device cpu --results_file 'abc_out_y0.txt' --no_incomplete
Configurations:

general:
device: cpu
seed: 100
conv_mode: patches
deterministic: false
double_fp: false
loss_reduction_func: sum
record_bounds: false
sparse_alpha: true
save_adv_example: false
precompile_jit: false
complete_verifier: bab
enable_incomplete_verification: false
csv_name: null
results_file: abc_out_y0.txt
root_path: ''
model:
name: null
path: null
onnx_path: net.onnx
onnx_path_prefix: ''
cache_onnx_conversion: false
onnx_quirks: null
input_shape: null
onnx_loader: default_onnx_and_vnnlib_loader
onnx_optimization_flags: none
data:
start: 0
end: 10000
select_instance: null
num_outputs: 10
mean: 0.0
std: 1.0
pkl_path: null
dataset: CIFAR
data_filter_path: null
data_idx_file: null
specification:
type: lp
robustness_type: verified-acc
norm: .inf
epsilon: null
vnnlib_path: prop_y0.vnnlb
vnnlib_path_prefix: ''
solver:
batch_size: 64
min_batch_size_ratio: 0.1
use_float64_in_last_iteration: false
early_stop_patience: 10
start_save_best: 0.5
bound_prop_method: alpha-crown
prune_after_crown: false
crown:
batch_size: 1000000000
max_crown_size: 1000000000
alpha-crown:
alpha: true
lr_alpha: 0.1
iteration: 100
share_slopes: false
no_joint_opt: false
lr_decay: 0.98
full_conv_alpha: true
beta-crown:
lr_alpha: 0.01
lr_beta: 0.05
lr_decay: 0.98
optimizer: adam
iteration: 50
beta: true
beta_warmup: true
enable_opt_interm_bounds: false
all_node_split_LP: false
forward:
refine: false
dynamic: false
max_dim: 10000
multi_class:
multi_class_method: allclass_domain
label_batch_size: 32
skip_with_refined_bound: true
mip:
parallel_solvers: null
solver_threads: 1
refine_neuron_timeout: 15
refine_neuron_time_percentage: 0.8
early_stop: true
adv_warmup: true
mip_solver: gurobi
bab:
initial_max_domains: 1
max_domains: .inf
decision_thresh: 0
timeout: 360
timeout_scale: 1
override_timeout: null
get_upper_bound: false
dfs_percent: 0.0
pruning_in_iteration: true
pruning_in_iteration_ratio: 0.2
sort_targets: false
batched_domain_list: true
optimized_intermediate_layers: ''
interm_transfer: true
cut:
enabled: false
bab_cut: false
lp_cut: false
method: null
lr: 0.01
lr_decay: 1.0
iteration: 100
bab_iteration: -1
early_stop_patience: -1
lr_beta: 0.02
number_cuts: 50
topk_cuts_in_filter: 100
batch_size_primal: 100
max_num: 1000000000
patches_cut: false
cplex_cuts: false
cplex_cuts_wait: 0
cplex_cuts_revpickup: true
cut_reference_bounds: true
fix_intermediate_bounds: false
branching:
method: kfsb
candidates: 3
reduceop: min
sb_coeff_thresh: 0.001
input_split:
enable: false
enhanced_bound_prop_method: alpha-crown
enhanced_branching_method: naive
enhanced_bound_patience: 100000000.0
attack_patience: 100000000.0
adv_check: 0
sort_domain_interval: -1
attack:
enabled: false
beam_candidates: 8
beam_depth: 7
max_dive_fix_ratio: 0.8
min_local_free_ratio: 0.2
mip_start_iteration: 5
mip_timeout: 30.0
adv_pool_threshold: null
refined_mip_attacker: false
refined_batch_size: null
attack:
pgd_order: before
pgd_steps: 100
pgd_restarts: 30
pgd_early_stop: true
pgd_lr_decay: 0.99
pgd_alpha: auto
pgd_loss_mode: null
enable_mip_attack: false
cex_path: ./test_cex.txt
attack_mode: PGD
gama_lambda: 10.0
gama_decay: 0.9
check_clean: false
input_split:
pgd_steps: 100
pgd_restarts: 30
pgd_alpha: auto
input_split_enhanced:
pgd_steps: 200
pgd_restarts: 5000000
pgd_alpha: auto
input_split_check_adv:
pgd_steps: 5
pgd_restarts: 5
pgd_alpha: auto
debug:
lp_test: null

Experiments at Thu Mar 14 13:23:25 2024 on pillar1
Internal results will be saved to abc_out_y0.txt.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% idx: 0, vnnlib ID: 0 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Using onnx net.onnx
Using vnnlib prop_y0.vnnlb
Precompiled vnnlib file found at prop_y0.vnnlb.compiled
Loading onnx net.onnx wih quirks {}
/home/h/anaconda3/envs/alpha-beta-crown/lib/python3.7/site-packages/onnx2pytorch/convert/layer.py:30: UserWarning: The given NumPy array is not writable, and PyTorch does not support non-writable tensors. This means writing to this tensor will result in undefined behavior. You may want to copy the array to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /opt/conda/conda-bld/pytorch_1646755953518/work/torch/csrc/utils/tensor_numpy.cpp:178.)
layer.weight.data = torch.from_numpy(numpy_helper.to_array(weight))
/home/h/anaconda3/envs/alpha-beta-crown/lib/python3.7/site-packages/onnx2pytorch/convert/model.py:154: UserWarning: Using experimental implementation that allows 'batch_size > 1'.Batchnorm layers could potentially produce false outputs.
"Using experimental implementation that allows 'batch_size > 1'."
/home/h/anaconda3/envs/alpha-beta-crown/lib/python3.7/site-packages/torch/nn/functional.py:749: UserWarning: Note that order of the arguments: ceil_mode and return_indices will changeto match the args list in nn.MaxPool2d in a future release.
warnings.warn("Note that order of the arguments: ceil_mode and return_indices will change"
Attack parameters: initialization=uniform, steps=100, restarts=30, alpha=0.07362499833106995, initialization=uniform, GAMA=False
Model output of first 5 examples:
tensor([[-5.98954344, 2.28598309, 3.65411043]])
Adv example prediction (first 2 examples and 2 restarts):
tensor([[[-2.10495210, -0.81939900, 3.52598715]]])
PGD attack margin (first 2 examles and 10 specs):
tensor([[[1.28555310, 5.63093948]]])
number of violation: 0
Attack finished in 1.2851 seconds.
PGD attack failed
Total VNNLIB file length: 1, max property batch size: 1, total number of batches: 1

Properties batch 0, size 1
Remaining timeout: 358.6844446659088

Instance 0 first 10 spec matrices: [[[-1. 1. 0.]

[-1. 0. 1.]]]
thresholds: [0. 0.] ######
/home/h/anaconda3/envs/alpha-beta-crown/lib/python3.7/site-packages/onnx2pytorch/operations/reshape.py:36: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
if (shape[0] == 1 and (len(shape) == 4 or len(shape) == 2)
/home/h/anaconda3/envs/alpha-beta-crown/lib/python3.7/site-packages/onnx2pytorch/operations/reshape.py:55: TracerWarning: Iterating over a tensor might cause the trace to be incorrect. Passing a tensor of different shape won't change the number of iterations executed (and might lead to errors or silently give incorrect results).
shape = [x if x != 0 else input.size(i) for i, x in enumerate(shape)]
Model prediction is: tensor([-5.98954344, 2.28598332, 3.65411091])
Traceback (most recent call last):
File "/home/h/project2/alpha-beta-CROWN-main/complete_verifier/abcrown.py", line 650, in
main()
File "/home/h/project2/alpha-beta-CROWN-main/complete_verifier/abcrown.py", line 573, in main
refined_betas=refined_betas, attack_images=all_adv_candidates, attack_margins=attack_margins)
File "/home/h/project2/alpha-beta-CROWN-main/complete_verifier/abcrown.py", line 404, in complete_verifier
rhs=rhs, timeout=timeout, attack_images=this_spec_attack_images)
File "/home/h/project2/alpha-beta-CROWN-main/complete_verifier/abcrown.py", line 209, in bab
timeout=timeout, refined_betas=refined_betas, rhs=rhs)
File "/home/h/project2/alpha-beta-CROWN-main/complete_verifier/batch_branch_and_bound.py", line 399, in relu_bab_parallel
domain, x, stop_criterion_func=stop_criterion(decision_thresh))
File "/home/h/project2/alpha-beta-CROWN-main/complete_verifier/beta_CROWN_solver.py", line 1069, in build_the_model
(self.x,), share_slopes=share_slopes, c=self.c, bound_upper=False)
File "/home/h/project2/alpha-beta-CROWN-main/complete_verifier/auto_LiRPA/optimized_bounds.py", line 1023, in init_slope
intermediate_layer_bounds=intermediate_layer_bounds)
File "/home/h/project2/alpha-beta-CROWN-main/complete_verifier/auto_LiRPA/bound_general.py", line 1321, in compute_bounds
self.check_prior_bounds(final)
File "/home/h/project2/alpha-beta-CROWN-main/complete_verifier/auto_LiRPA/bound_general.py", line 849, in check_prior_bounds
self.check_prior_bounds(n)
File "/home/h/project2/alpha-beta-CROWN-main/complete_verifier/auto_LiRPA/bound_general.py", line 849, in check_prior_bounds
self.check_prior_bounds(n)
File "/home/h/project2/alpha-beta-CROWN-main/complete_verifier/auto_LiRPA/bound_general.py", line 849, in check_prior_bounds
self.check_prior_bounds(n)
[Previous line repeated 9 more times]
File "/home/h/project2/alpha-beta-CROWN-main/complete_verifier/auto_LiRPA/bound_general.py", line 857, in check_prior_bounds
node.inputs[i], prior_checked=True)
File "/home/h/project2/alpha-beta-CROWN-main/complete_verifier/auto_LiRPA/bound_general.py", line 959, in compute_intermediate_bounds
unstable_size=unstable_size)
File "/home/h/project2/alpha-beta-CROWN-main/complete_verifier/auto_LiRPA/backward_bound.py", line 156, in backward_general
A, lower_b, upper_b = l.bound_backward(l.lA, l.uA, *l.inputs)
File "/home/h/project2/alpha-beta-CROWN-main/complete_verifier/auto_LiRPA/operators/shape.py", line 507, in bound_backward
return [(_bound_oneside(last_lA), _bound_oneside(last_uA))], 0, 0
File "/home/h/project2/alpha-beta-CROWN-main/complete_verifier/auto_LiRPA/operators/shape.py", line 505, in _bound_oneside
return last_A.permute(self.perm_inv_inc_one)
AttributeError: 'Patches' object has no attribute 'permute'

Strangely, the tool works perfectly for some other inputs.
I have attached both the neural network and VNNLB files.
net.txt
prop_y0.txt

@habeebp098
Copy link
Author

The latest version of the code is also encountering the same error for the network and VNNLIB file mentioned above.

alpha-beta-CROWN/complete_verifier$ python abcrown.py --config exp_configs/tutorial_examples/pytorch_model_with_one_vnnlib.yaml --device cpu
Configurations:

general:
  device: cpu
  seed: 100
  conv_mode: patches
  deterministic: false
  double_fp: false
  loss_reduction_func: sum
  sparse_alpha: true
  sparse_interm: true
  save_adv_example: false
  eval_adv_example: false
  show_adv_example: false
  precompile_jit: false
  complete_verifier: bab
  enable_incomplete_verification: true
  csv_name: null
  results_file: out.txt
  root_path: ''
  deterministic_opt: false
  graph_optimizer: 'Customized("custom_graph_optimizer", "default_optimizer")'
  buffer_has_batchdim: false
  save_output: false
  output_file: out.pkl
  return_optimized_model: false
model:
  name: null
  path: null
  onnx_path: net1.onnx
  onnx_path_prefix: ''
  cache_onnx_conversion: false
  debug_onnx: false
  onnx_quirks: null
  input_shape: null
  onnx_loader: default_onnx_and_vnnlib_loader
  onnx_optimization_flags: none
  onnx_vnnlib_joint_optimization_flags: none
  check_optmized: false
  flatten_final_output: false
  optimize_graph: null
  with_jacobian: false
data:
  start: 0
  end: 10000
  select_instance: null
  num_outputs: 10
  mean: 0.0
  std: 1.0
  pkl_path: null
  dataset: null
  data_filter_path: null
  data_idx_file: null
specification:
  type: lp
  robustness_type: verified-acc
  norm: .inf
  epsilon: null
  epsilon_min: 0.0
  vnnlib_path: prop_y0.vnnlb
  vnnlib_path_prefix: ''
  rhs_offset: null
solver:
  batch_size: 64
  auto_enlarge_batch_size: false
  min_batch_size_ratio: 0.1
  use_float64_in_last_iteration: false
  early_stop_patience: 10
  start_save_best: 0.5
  bound_prop_method: alpha-crown
  init_bound_prop_method: same
  prune_after_crown: false
  optimize_disjuncts_separately: false
  crown:
    batch_size: 1000000000
    max_crown_size: 1000000000
    relu_option: adaptive
  alpha-crown:
    alpha: true
    lr_alpha: 0.1
    iteration: 100
    share_alphas: false
    lr_decay: 0.98
    full_conv_alpha: true
    max_coeff_mul: .inf
    matmul_share_alphas: false
    disable_optimization: []
  invprop:
    apply_output_constraints_to: []
    tighten_input_bounds: false
    best_of_oc_and_no_oc: false
    directly_optimize: []
    oc_lr: 0.1
    share_gammas: false
  beta-crown:
    lr_alpha: 0.01
    lr_beta: 0.05
    lr_decay: 0.98
    optimizer: adam
    iteration: 50
    beta: true
    beta_warmup: true
    enable_opt_interm_bounds: false
    all_node_split_LP: false
  forward:
    refine: false
    dynamic: false
    max_dim: 10000
    reset_threshold: 1.0
  multi_class:
    label_batch_size: 32
    skip_with_refined_bound: true
  mip:
    parallel_solvers: null
    solver_threads: 1
    refine_neuron_timeout: 15
    refine_neuron_time_percentage: 0.8
    early_stop: true
    adv_warmup: true
    mip_solver: gurobi
    skip_unsafe: false
bab:
  initial_max_domains: 1
  max_domains: .inf
  decision_thresh: 0
  timeout: 360
  timeout_scale: 1
  max_iterations: -1
  override_timeout: null
  get_upper_bound: false
  pruning_in_iteration: true
  pruning_in_iteration_ratio: 0.2
  sort_targets: false
  batched_domain_list: true
  optimized_interm: ''
  interm_transfer: true
  recompute_interm: false
  sort_domain_interval: -1
  vanilla_crown: false
  cut:
    enabled: false
    implication: false
    bab_cut: false
    lp_cut: false
    method: null
    lr: 0.01
    lr_decay: 1.0
    iteration: 100
    bab_iteration: -1
    early_stop_patience: -1
    lr_beta: 0.02
    number_cuts: 50
    topk_cuts_in_filter: 1000
    batch_size_primal: 100
    max_num: 1000000000
    patches_cut: false
    cplex_cuts: false
    cplex_cuts_wait: 0
    cplex_cuts_revpickup: true
    cut_reference_bounds: true
    fix_intermediate_bounds: false
  branching:
    method: kfsb
    candidates: 3
    reduceop: min
    enable_intermediate_bound_opt: false
    branching_input_and_activation: false
    branching_input_and_activation_order: [input, relu]
    branching_input_iterations: 30
    branching_relu_iterations: 50
    nonlinear_split:
      method: shortcut
      branching_point_method: uniform
      num_branches: 2
      filter: false
      filter_beta: false
      filter_batch_size: 10000
      filter_iterations: 25
      use_min: false
      loose_tanh_threshold: null
      dynamic_bbps: false
      dynamic_options: [uniform, three_left, three_right]
    input_split:
      enable: false
      enhanced_bound_prop_method: alpha-crown
      enhanced_branching_method: naive
      enhanced_bound_patience: 100000000.0
      attack_patience: 100000000.0
      adv_check: 0
      split_partitions: 2
      sb_margin_weight: 1.0
      sb_sum: false
      bf_backup_thresh: -1
      bf_rhs_offset: 0
      bf_iters: 1000000000.0
      bf_batch_size: 100000
      bf_zero_crossing_score: false
      touch_zero_score: 0
      ibp_enhancement: false
      catch_assertion: false
      compare_with_old_bounds: false
      update_rhs_with_attack: false
      sb_coeff_thresh: 0.001
      sort_index: null
      sort_descending: true
      show_progress: false
  attack:
    enabled: false
    beam_candidates: 8
    beam_depth: 7
    max_dive_fix_ratio: 0.8
    min_local_free_ratio: 0.2
    mip_start_iteration: 5
    mip_timeout: 30.0
    adv_pool_threshold: null
    refined_mip_attacker: false
    refined_batch_size: null
attack:
  pgd_order: before
  pgd_steps: 100
  pgd_restarts: 30
  pgd_batch_size: 100000000
  pgd_early_stop: true
  pgd_lr_decay: 0.99
  pgd_alpha: auto
  pgd_alpha_scale: false
  pgd_loss_mode: null
  enable_mip_attack: false
  adv_saver: default_adv_saver
  early_stop_condition: default_early_stop_condition
  adv_example_finalizer: default_adv_example_finalizer
  pgd_loss: default_pgd_loss
  cex_path: ./test_cex.txt
  attack_mode: PGD
  attack_tolerance: 0.0
  attack_func: attack_with_general_specs
  gama_lambda: 10.0
  gama_decay: 0.9
  check_clean: false
  input_split:
    pgd_steps: 100
    pgd_restarts: 30
    pgd_alpha: auto
  input_split_enhanced:
    pgd_steps: 200
    pgd_restarts: 500000
    pgd_alpha: auto
  input_split_check_adv:
    pgd_steps: 5
    pgd_restarts: 5
    pgd_alpha: auto
    max_num_domains: 10
debug:
  view_model: false
  lp_test: null
  rescale_vnnlib_ptb: null
  test_optimized_bounds: false
  test_optimized_bounds_after_n_iterations: 0
  print_verbose_decisions: false

Experiments at Thu Jun  6 04:42:56 2024 on pillar1
Internal results will be saved to out.txt.

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% idx: 0, vnnlib ID: 0 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Using onnx net1.onnx
Using vnnlib prop_y0.vnnlb
Precompiled vnnlib file found at prop_y0.vnnlb.compiled
Loading onnx net1.onnx wih quirks {}
/home/h/anaconda3/envs/alpha-beta-crown3/lib/python3.11/site-packages/onnx2pytorch/convert/layer.py:29: UserWarning: The given NumPy array is not writable, and PyTorch does not support non-writable tensors. This means writing to this tensor will result in undefined behavior. You may want to copy the array to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /opt/conda/conda-bld/pytorch_1708025845868/work/torch/csrc/utils/tensor_numpy.cpp:206.)
  layer.weight.data = torch.from_numpy(numpy_helper.to_array(weight))
/home/h/anaconda3/envs/alpha-beta-crown3/lib/python3.11/site-packages/onnx2pytorch/convert/model.py:151: UserWarning: Using experimental implementation that allows 'batch_size > 1'.Batchnorm layers could potentially produce false outputs.
  warnings.warn(
Attack parameters: initialization=uniform, steps=100, restarts=30, alpha=0.07449999451637268, initialization=uniform, GAMA=False
Model output of first 5 examples:
 tensor([[-9.41845608, 11.91907406, -2.72109032]])
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00,  1.09s/it]
Adv example prediction (first 2 examples and 2 restarts):
 tensor([[[-7.09657097,  9.00977802, -2.11059594]]])
PGD attack margin (first 2 examles and 10 specs):
 tensor([[[16.10634995,  4.98597527]]])
number of violation:  0
Attack finished in 1.0931 seconds.
PGD attack failed
/home/h/anaconda3/envs/alpha-beta-crown3/lib/python3.11/site-packages/onnx2pytorch/operations/reshape.py:36: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if shape[0] == 1 and len(shape) in [2, 3, 4, 5] and self.quirks.get("fix_batch_size") is True:
/home/h/anaconda3/envs/alpha-beta-crown3/lib/python3.11/site-packages/onnx2pytorch/operations/reshape.py:54: TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect.
  if (torch.prod(torch.tensor(input.shape)) != torch.prod(shape) and len(input.size()) == len(shape) + 1
/home/h/anaconda3/envs/alpha-beta-crown3/lib/python3.11/site-packages/onnx2pytorch/operations/reshape.py:54: TracerWarning: Using len to get tensor shape might cause the trace to be incorrect. Recommended usage would be tensor.shape[0]. Passing a tensor of different shape might lead to errors or silently give incorrect results.
  if (torch.prod(torch.tensor(input.shape)) != torch.prod(shape) and len(input.size()) == len(shape) + 1
/home/h/anaconda3/envs/alpha-beta-crown3/lib/python3.11/site-packages/onnx2pytorch/operations/reshape.py:58: TracerWarning: Iterating over a tensor might cause the trace to be incorrect. Passing a tensor of different shape won't change the number of iterations executed (and might lead to errors or silently give incorrect results).
  shape = [x if x != 0 else input.size(i) for i, x in enumerate(shape)]
/home/h/project2/alpha-beta-CROWN/complete_verifier/auto_LiRPA/operators/leaf.py:192: UserWarning: The "has_batchdim" option for BoundBuffers is deprecated. It may be removed from the next release.
  warnings.warn('The "has_batchdim" option for BoundBuffers is deprecated.'
Model: BoundedModule(
  (/0): BoundInput(name=/0, inputs=[], perturbed=True)
  (/shape): BoundBuffers(name=/shape, inputs=[], perturbed=False)
  (/12): BoundParams(name=/12, inputs=[], perturbed=False)
  (/13): BoundParams(name=/13, inputs=[], perturbed=False)
  (/14): BoundParams(name=/14, inputs=[], perturbed=False)
  (/15): BoundParams(name=/15, inputs=[], perturbed=False)
  (/16): BoundParams(name=/16, inputs=[], perturbed=False)
  (/17): BoundParams(name=/17, inputs=[], perturbed=False)
  (/18): BoundParams(name=/18, inputs=[], perturbed=False)
  (/19): BoundParams(name=/19, inputs=[], perturbed=False)
  (/20): BoundParams(name=/20, inputs=[], perturbed=False)
  (/21): BoundParams(name=/21, inputs=[], perturbed=False)
  (/input): BoundTranspose(name=/input, inputs=[/0], perturbed=True)
  (/input.3): BoundConv(name=/input.3, inputs=[/input, /12, /13], perturbed=True)
  (/24): BoundRelu(name=/24, inputs=[/input.3], perturbed=True)
  (/input.7): BoundMaxPool(name=/input.7, inputs=[/24], perturbed=True)
  (/input.11): BoundConv(name=/input.11, inputs=[/input.7, /14, /15], perturbed=True)
  (/27): BoundRelu(name=/27, inputs=[/input.11], perturbed=True)
  (/input.15): BoundMaxPool(name=/input.15, inputs=[/27], perturbed=True)
  (/input.19): BoundConv(name=/input.19, inputs=[/input.15, /16, /17], perturbed=True)
  (/30): BoundRelu(name=/30, inputs=[/input.19], perturbed=True)
  (/31): BoundMaxPool(name=/31, inputs=[/30], perturbed=True)
  (/32): BoundTranspose(name=/32, inputs=[/31], perturbed=True)
  (/33): BoundConstant(name=/33, inputs=[], perturbed=False)
  (/34): BoundSplit(name=/34, inputs=[/shape, /33], perturbed=False)
  (/35): BoundSplit(name=/35, inputs=[/shape, /33], perturbed=False)
  (/36): BoundConstant(name=/36, value=tensor([0]))
  (/37): BoundSqueeze(name=/37, inputs=[/34, /36], perturbed=False)
  (/38): BoundConstant(name=/38, value=tensor([0]))
  (/39): BoundSqueeze(name=/39, inputs=[/35, /38], perturbed=False)
  (/40): BoundConstant(name=/40, value=tensor([0]))
  (/41): BoundUnsqueeze(name=/41, inputs=[/37, /40], perturbed=False)
  (/42): BoundConstant(name=/42, value=tensor([0]))
  (/43): BoundUnsqueeze(name=/43, inputs=[/39, /42], perturbed=False)
  (/44): BoundConcat(name=/44, inputs=[/41, /43], perturbed=False)
  (/45): BoundReshape(name=/45, inputs=[/32, /44], perturbed=True)
  (/input.23): BoundLinear(name=/input.23, inputs=[/45, /18, /19], perturbed=True)
  (/47): BoundRelu(name=/47, inputs=[/input.23], perturbed=True)
  (/48): BoundLinear(name=/48, inputs=[/47, /20, /21], perturbed=True)
)
Original output: tensor([[-9.41845608, 11.91907501, -2.72108960]])
Split layers:
  BoundConv(name=/input.3, inputs=[/input, /12, /13], perturbed=True): [(BoundRelu(name=/24, inputs=[/input.3], perturbed=True), 0)]
  BoundConv(name=/input.11, inputs=[/input.7, /14, /15], perturbed=True): [(BoundRelu(name=/27, inputs=[/input.11], perturbed=True), 0)]
  BoundConv(name=/input.19, inputs=[/input.15, /16, /17], perturbed=True): [(BoundRelu(name=/30, inputs=[/input.19], perturbed=True), 0)]
  BoundLinear(name=/input.23, inputs=[/45, /18, /19], perturbed=True): [(BoundRelu(name=/47, inputs=[/input.23], perturbed=True), 0)]
Nonlinear functions:
   BoundRelu(name=/24, inputs=[/input.3], perturbed=True)
   BoundMaxPool(name=/input.7, inputs=[/24], perturbed=True)
   BoundRelu(name=/27, inputs=[/input.11], perturbed=True)
   BoundMaxPool(name=/input.15, inputs=[/27], perturbed=True)
   BoundRelu(name=/30, inputs=[/input.19], perturbed=True)
   BoundMaxPool(name=/31, inputs=[/30], perturbed=True)
   BoundRelu(name=/47, inputs=[/input.23], perturbed=True)
Traceback (most recent call last):
  File "/home/h/project2/alpha-beta-CROWN/complete_verifier/abcrown.py", line 706, in <module>
    abcrown.main()
  File "/home/h/project2/alpha-beta-CROWN/complete_verifier/abcrown.py", line 638, in main
    incomplete_verification_output = self.incomplete_verifier(
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/h/project2/alpha-beta-CROWN/complete_verifier/abcrown.py", line 159, in incomplete_verifier
    global_lb, ret = model.build(
                     ^^^^^^^^^^^^
  File "/home/h/project2/alpha-beta-CROWN/complete_verifier/beta_CROWN_solver.py", line 454, in build
    lb, ub, aux_reference_bounds = self.net.init_alpha(
                                   ^^^^^^^^^^^^^^^^^^^^
  File "/home/h/project2/alpha-beta-CROWN/complete_verifier/auto_LiRPA/optimized_bounds.py", line 845, in init_alpha
    l, u = self.compute_bounds(
           ^^^^^^^^^^^^^^^^^^^^
  File "/home/h/project2/alpha-beta-CROWN/complete_verifier/auto_LiRPA/bound_general.py", line 1316, in compute_bounds
    return self._compute_bounds_main(C=C,
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/h/project2/alpha-beta-CROWN/complete_verifier/auto_LiRPA/bound_general.py", line 1414, in _compute_bounds_main
    self.check_prior_bounds(final)
  File "/home/h/project2/alpha-beta-CROWN/complete_verifier/auto_LiRPA/bound_general.py", line 879, in check_prior_bounds
    self.check_prior_bounds(n)
  File "/home/h/project2/alpha-beta-CROWN/complete_verifier/auto_LiRPA/bound_general.py", line 879, in check_prior_bounds
    self.check_prior_bounds(n)
  File "/home/h/project2/alpha-beta-CROWN/complete_verifier/auto_LiRPA/bound_general.py", line 879, in check_prior_bounds
    self.check_prior_bounds(n)
  [Previous line repeated 9 more times]
  File "/home/h/project2/alpha-beta-CROWN/complete_verifier/auto_LiRPA/bound_general.py", line 897, in check_prior_bounds
    self.compute_intermediate_bounds(
  File "/home/h/project2/alpha-beta-CROWN/complete_verifier/auto_LiRPA/bound_general.py", line 981, in compute_intermediate_bounds
    node.lower, node.upper = self.backward_general(
                             ^^^^^^^^^^^^^^^^^^^^^^
  File "/home/h/project2/alpha-beta-CROWN/complete_verifier/auto_LiRPA/backward_bound.py", line 337, in backward_general
    A, lower_b, upper_b = l.bound_backward(
                          ^^^^^^^^^^^^^^^^^
  File "/home/h/project2/alpha-beta-CROWN/complete_verifier/auto_LiRPA/operators/reshape.py", line 288, in bound_backward
    return [(_bound_oneside(last_lA), _bound_oneside(last_uA))], 0, 0
             ^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/h/project2/alpha-beta-CROWN/complete_verifier/auto_LiRPA/operators/reshape.py", line 286, in _bound_oneside
    return last_A.permute(self.perm_inv_inc_one)
           ^^^^^^^^^^^^^^
AttributeError: 'Patches' object has no attribute 'permute'

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant