-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLogistic_Regression
102 lines (67 loc) · 2.48 KB
/
Logistic_Regression
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Logistic Regression - Applicants that got admission vs applicants that didn't get admission
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def net_input(theta, x):
# Computes the weighted sum of inputs
return np.dot(x, theta)
def probability(theta, x):
# Returns the probability after passing through sigmoid
return sigmoid(net_input(theta, x))
def cost_function(self, theta, x, y):
m = x.shape[0]
total_cost = -(1 / m) * np.sum(y * np.log(probability(theta, x)) + (1 - y) * np.log(1 - probability(theta, x)))
return total_cost
def gradient(self, theta, x, y):
m = x.shape[0]
return (1 / m) * np.dot(x.T, sigmoid(net_input(theta, x)) - y)
def fit(self, x, y, theta):
opt_weights = fmin_tnc(func=cost_function, x0=theta, fprime=gradient,args=(x, y.flatten()))
return opt_weights[0]
def load_data(path, header):
marks_df = pd.read_csv(path, header=header)
return marks_df
# load the data from the file
data = load_data("data/marks.txt", None)
# X = feature values
X = data.iloc[:, :-1]
# y = target values
y = data.iloc[:, -1]
# filter out the applicants that got admitted
admitted = data.loc[y == 1]
# filter out the applicants that din't get admission
not_admitted = data.loc[y == 0]
# plots
plt.scatter(admitted.iloc[:, 0], admitted.iloc[:, 1], s=10, label='Admitted')
plt.scatter(not_admitted.iloc[:, 0], not_admitted.iloc[:, 1], s=10, label='Not Admitted')
plt.legend()
plt.show()
#### Create the data ########
X = np.c_[np.ones((X.shape[0], 1)), X]
y = y[:, np.newaxis]
theta = np.zeros((X.shape[1], 1))
## Find the parameters ##
parameters = fit(X, y, theta)
## [-25.16131856 0.20623159 0.20147149] ##
## Plotting the decision boundary ##
x_values = [np.min(X[:, 1] - 5), np.max(X[:, 2] + 5)]
y_values = - (parameters[0] + np.dot(parameters[1], x_values)) / parameters[2]
plt.plot(x_values, y_values, label='Decision Boundary')
plt.xlabel('Marks in 1st Exam')
plt.ylabel('Marks in 2nd Exam')
plt.legend()
plt.show()
## Find the accuracy of model ##
def predict(self, x):
theta = parameters[:, np.newaxis]
return probability(theta, x)
def accuracy(self, x, actual_classes, probab_threshold=0.5):
predicted_classes = (predict(x) >=
probab_threshold).astype(int)
predicted_classes = predicted_classes.flatten()
accuracy = np.mean(predicted_classes == actual_classes)
return accuracy * 100
accuracy(X, y.flatten())
## 89% ##