forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
83 lines (72 loc) · 3.38 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
import os
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
from transformers import AutoTokenizer
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for npu model')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
help='The huggingface repo id for the Llama2 model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument("--lowbit-path", type=str,
default="",
help='The path to the lowbit model folder, leave blank if you do not want to save. \
If path not exists, lowbit model will be saved there. \
Else, lowbit model will be loaded.')
parser.add_argument('--prompt', type=str, default="Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
parser.add_argument('--load_in_low_bit', type=str, default="sym_int8",
help='Load in low bit to use')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
if not args.lowbit_path or not os.path.exists(args.lowbit_path):
model = AutoModelForCausalLM.from_pretrained(
model_path,
trust_remote_code=True,
load_in_low_bit=args.load_in_low_bit,
attn_implementation="eager"
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
tokenizer.save_pretrained(args.lowbit_path)
else:
model = AutoModelForCausalLM.load_low_bit(
args.lowbit_path,
trust_remote_code=True,
bigdl_transformers_low_bit=args.load_in_low_bit,
attn_implementation="eager"
)
tokenizer = AutoTokenizer.from_pretrained(args.lowbit_path, trust_remote_code=True)
print(model)
if args.lowbit_path and not os.path.exists(args.lowbit_path):
model.save_low_bit(args.lowbit_path)
with torch.inference_mode():
input_ids = tokenizer.encode(args.prompt, return_tensors="pt")
print("finish to load")
print('input length:', len(input_ids[0]))
st = time.time()
output = model.generate(input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict)
end = time.time()
print(f'Inference time: {end-st} s')
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print('-'*20, 'Output', '-'*20)
print(output_str)
print('-'*80)
print('done')