forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate.py
88 lines (76 loc) · 4.07 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM, init_pipeline_parallel
from transformers import AutoTokenizer
init_pipeline_parallel()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-13b-chat-hf",
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
parser.add_argument('--low-bit', type=str, default='sym_int4', help='The quantization type the model will convert to.')
parser.add_argument('--gpu-num', type=int, default=2, help='GPU number to use')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
low_bit = args.low_bit
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
try:
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_low_bit=low_bit,
optimize_model=True,
trust_remote_code=True,
use_cache=True,
torch_dtype=torch.float16,
pipeline_parallel_stages=args.gpu_num)
except:
model = AutoModel.from_pretrained(model_path,
load_in_low_bit=low_bit,
optimize_model=True,
trust_remote_code=True,
use_cache=True,
pipeline_parallel_stages=args.gpu_num)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
local_rank = torch.distributed.get_rank()
# Generate predicted tokens
with torch.inference_mode():
input_ids = tokenizer.encode(args.prompt, return_tensors="pt").to(f'xpu:{local_rank}')
# ipex_llm model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
# start inference
st = time.time()
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
torch.xpu.synchronize()
end = time.time()
output = output.cpu()
if local_rank == args.gpu_num - 1:
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print(f"First token cost {model.first_token_time:.4f} s and rest tokens cost average {model.rest_cost_mean:.4f} s")
print('-'*20, 'Prompt', '-'*20)
print(args.prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)