forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rag.py
252 lines (207 loc) · 8.51 KB
/
rag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
from sqlalchemy import make_url
from llama_index.vector_stores.postgres import PGVectorStore
# from llama_index.llms.llama_cpp import LlamaCPP
import psycopg2
from pathlib import Path
from llama_index.readers.file import PyMuPDFReader
from llama_index.core.schema import NodeWithScore
from typing import Optional
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core import QueryBundle
from llama_index.core.retrievers import BaseRetriever
from typing import Any, List
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.vector_stores import VectorStoreQuery
import argparse
def load_vector_database(username, password):
db_name = "example_db"
host = "localhost"
password = password
port = "5432"
user = username
# conn = psycopg2.connect(connection_string)
conn = psycopg2.connect(
dbname="postgres",
host=host,
password=password,
port=port,
user=user,
)
conn.autocommit = True
with conn.cursor() as c:
c.execute(f"DROP DATABASE IF EXISTS {db_name}")
c.execute(f"CREATE DATABASE {db_name}")
vector_store = PGVectorStore.from_params(
database=db_name,
host=host,
password=password,
port=port,
user=user,
table_name="llama2_paper",
embed_dim=384, # openai embedding dimension
)
return vector_store
def load_data(data_path):
loader = PyMuPDFReader()
documents = loader.load(file_path=data_path)
text_parser = SentenceSplitter(
chunk_size=1024,
# separator=" ",
)
text_chunks = []
# maintain relationship with source doc index, to help inject doc metadata in (3)
doc_idxs = []
for doc_idx, doc in enumerate(documents):
cur_text_chunks = text_parser.split_text(doc.text)
text_chunks.extend(cur_text_chunks)
doc_idxs.extend([doc_idx] * len(cur_text_chunks))
from llama_index.core.schema import TextNode
nodes = []
for idx, text_chunk in enumerate(text_chunks):
node = TextNode(
text=text_chunk,
)
src_doc = documents[doc_idxs[idx]]
node.metadata = src_doc.metadata
nodes.append(node)
return nodes
class VectorDBRetriever(BaseRetriever):
"""Retriever over a postgres vector store."""
def __init__(
self,
vector_store: PGVectorStore,
embed_model: Any,
query_mode: str = "default",
similarity_top_k: int = 2,
) -> None:
"""Init params."""
self._vector_store = vector_store
self._embed_model = embed_model
self._query_mode = query_mode
self._similarity_top_k = similarity_top_k
super().__init__()
def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
"""Retrieve."""
query_embedding = self._embed_model.get_query_embedding(
query_bundle.query_str
)
vector_store_query = VectorStoreQuery(
query_embedding=query_embedding,
similarity_top_k=self._similarity_top_k,
mode=self._query_mode,
)
query_result = self._vector_store.query(vector_store_query)
nodes_with_scores = []
for index, node in enumerate(query_result.nodes):
score: Optional[float] = None
if query_result.similarities is not None:
score = query_result.similarities[index]
nodes_with_scores.append(NodeWithScore(node=node, score=score))
return nodes_with_scores
def completion_to_prompt(completion):
return f"<|system|>\n</s>\n<|user|>\n{completion}</s>\n<|assistant|>\n"
# Transform a list of chat messages into zephyr-specific input
def messages_to_prompt(messages):
prompt = ""
for message in messages:
if message.role == "system":
prompt += f"<|system|>\n{message.content}</s>\n"
elif message.role == "user":
prompt += f"<|user|>\n{message.content}</s>\n"
elif message.role == "assistant":
prompt += f"<|assistant|>\n{message.content}</s>\n"
# ensure we start with a system prompt, insert blank if needed
if not prompt.startswith("<|system|>\n"):
prompt = "<|system|>\n</s>\n" + prompt
# add final assistant prompt
prompt = prompt + "<|assistant|>\n"
return prompt
def main(args):
from llama_index.embeddings.ipex_llm import IpexLLMEmbedding
embed_model = IpexLLMEmbedding(model_name=args.embedding_model_path, device="xpu")
# Use custom LLM in BigDL
from llama_index.llms.ipex_llm import IpexLLM
llm = IpexLLM.from_model_id(
model_name=args.model_path,
tokenizer_name=args.tokenizer_path,
context_window=512,
max_new_tokens=args.n_predict,
generate_kwargs={"temperature": 0.7, "do_sample": False},
model_kwargs={},
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
device_map="xpu",
)
vector_store = load_vector_database(username=args.user, password=args.password)
nodes = load_data(data_path=args.data)
for node in nodes:
node_embedding = embed_model.get_text_embedding(
node.get_content(metadata_mode="all")
)
node.embedding = node_embedding
vector_store.add(nodes)
# query_str = "Can you tell me about the key concepts for safety finetuning"
query_str = "Explain about the training data for Llama 2"
query_embedding = embed_model.get_query_embedding(query_str)
# construct vector store query
query_mode = "default"
# query_mode = "sparse"
# query_mode = "hybrid"
vector_store_query = VectorStoreQuery(
query_embedding=query_embedding, similarity_top_k=2, mode=query_mode
)
# returns a VectorStoreQueryResult
query_result = vector_store.query(vector_store_query)
# print("Retrieval Results: ")
# print(query_result.nodes[0].get_content())
nodes_with_scores = []
for index, node in enumerate(query_result.nodes):
score: Optional[float] = None
if query_result.similarities is not None:
score = query_result.similarities[index]
nodes_with_scores.append(NodeWithScore(node=node, score=score))
retriever = VectorDBRetriever(
vector_store, embed_model, query_mode="default", similarity_top_k=1
)
query_engine = RetrieverQueryEngine.from_args(retriever, llm=llm)
# query_str = "How does Llama 2 perform compared to other open-source models?"
query_str = args.question
response = query_engine.query(query_str)
print("------------RESPONSE GENERATION---------------------")
print(str(response))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='LlamaIndex BigdlLLM Example')
parser.add_argument('-m','--model-path', type=str, required=True,
help='the path to transformers model')
parser.add_argument('-q', '--question', type=str, default='How does Llama 2 perform compared to other open-source models?',
help='qustion you want to ask.')
parser.add_argument('-d','--data',type=str, default='./data/llama2.pdf',
help="the data used during retrieval")
parser.add_argument('-u', '--user', type=str, required=True,
help="user name in the database postgres")
parser.add_argument('-p','--password', type=str, required=True,
help="the password of the user in the database")
parser.add_argument('-e','--embedding-model-path',default="BAAI/bge-small-en",
help="the path to embedding model path")
parser.add_argument('-n','--n-predict', type=int, default=32,
help='max number of predict tokens')
parser.add_argument('-t','--tokenizer-path',type=str,required=True,
help='the path to transformers tokenizer')
args = parser.parse_args()
main(args)