forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate.py
77 lines (67 loc) · 3.49 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch, transformers
import sys, os, time
import argparse
from transformers import LlamaTokenizer
from ipex_llm.transformers import AutoModelForCausalLM
# Refer to https://huggingface.co/IEITYuan/Yuan2-2B-hf#Usage
YUAN2_PROMPT_FORMAT = """
{prompt}
"""
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Generate text using Yuan2-2B model')
parser.add_argument('--repo-id-or-model-path', type=str, default="IEITYuan/Yuan2-2B-hf",
help='The huggingface repo id for the Yuan2 to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt for the model')
parser.add_argument('--n-predict', type=int, default=100,
help='Number of tokens to generate')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load tokenizer
print("Creating tokenizer...")
tokenizer = LlamaTokenizer.from_pretrained(model_path, add_eos_token=False, add_bos_token=False, eos_token='<eod>')
tokenizer.add_tokens(['<sep>', '<pad>', '<mask>', '<predict>', '<FIM_SUFFIX>', '<FIM_PREFIX>', '<FIM_MIDDLE>','<commit_before>',
'<commit_msg>','<commit_after>','<jupyter_start>','<jupyter_text>','<jupyter_code>','<jupyter_output>','<empty_output>'], special_tokens=True)
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
print("Creating model...")
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True).eval()
# Convert the model to xpu
model = model.to('xpu')
prompt = YUAN2_PROMPT_FORMAT.format(prompt=args.prompt)
inputs = tokenizer(prompt, return_tensors="pt")["input_ids"]
# Convert the inputs to xpu
inputs = inputs.to('xpu')
# Default warmup since the first generate() is slow
outputs = model.generate(inputs, do_sample=True, top_k=5, max_length=args.n_predict)
print('Finish warmup')
# Measure the inference time
start_time = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,
# it is important to set `use_cache=True` explicitly in the `generate` function
# to obtain optimal performance with IPEX-LLM INT4 optimizations
outputs = model.generate(inputs, do_sample=True, top_k=5, max_length=args.n_predict)
end_time = time.time()
output_str = tokenizer.decode(outputs[0])
print(f'Inference time: {end_time - start_time} seconds')
print('-'*20, 'Output', '-'*20)
print(output_str)