forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate.py
88 lines (79 loc) · 3.93 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import time
import torch
import argparse
import requests
from PIL import Image
from ipex_llm.transformers import AutoModelForCausalLM
from transformers import AutoProcessor
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for phi-3 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="microsoft/Phi-3-vision-128k-instruct",
help='The huggingface repo id for the phi-3-vision model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--image-url-or-path', type=str,
default="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg",
help='The URL or path to the image to infer')
parser.add_argument('--prompt', type=str, default="What is in the image?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
image_path = args.image_url_or_path
# Load model in INT8,
# which convert the relevant layers in the model into INT8 format
# We here use INT8 instead of INT4 for better output
# `_attn_implementation="eager"` is required for phi-3-vision
# `modules_to_not_convert=["vision_embed_tokens"]` is for acceleration and is optional
model = AutoModelForCausalLM.from_pretrained(model_path,
trust_remote_code=True,
load_in_low_bit="sym_int8",
_attn_implementation="eager",
modules_to_not_convert=["vision_embed_tokens"])
# Load processor
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
# here the message formatting refers to https://huggingface.co/microsoft/Phi-3-vision-128k-instruct#sample-inference-code
messages = [
{"role": "user", "content": "<|image_1|>\n{prompt}".format(prompt=args.prompt)},
]
prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
if os.path.exists(image_path):
image = Image.open(image_path)
else:
image = Image.open(requests.get(image_path, stream=True).raw)
# Generate predicted tokens
with torch.inference_mode():
inputs = processor(prompt, [image], return_tensors="pt")
st = time.time()
output = model.generate(**inputs,
eos_token_id=processor.tokenizer.eos_token_id,
num_beams=1,
do_sample=False,
max_new_tokens=args.n_predict,
temperature=0.0)
end = time.time()
print(f'Inference time: {end-st} s')
output_str = processor.decode(output[0],
skip_special_tokens=True,
clean_up_tokenization_spaces=False)
print('-'*20, 'Prompt', '-'*20)
print(f'Message: {messages}')
print(f'Image link/path: {image_path}')
print('-'*20, 'Output', '-'*20)
print(output_str)