Skip to content

Latest commit

 

History

History
51 lines (48 loc) · 1.76 KB

README.md

File metadata and controls

51 lines (48 loc) · 1.76 KB

SampleRNN

A Tensorflow implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model.

Requirements

  • Tensroflow 1.0
  • Python 2.7
  • Librosa  

Dataset  

We used the pinao music of 74 minutes as the training corpus, and you can use any corpus containing ".wav" files to instead as well.
For Mandarin samples, we used human voice of 6 hours as the training corpus .

Samples

Pretrained model

FEATURES

  • 2-tier SampleRNN
  • 3-tier SampleRNN
  • Quantization in linear.
  • Quantization in mu-law.

Training

python train.py \
	--data_dir=./pinao-corpus \
	--silence_threshold=0.1 \
	--sample_size=102408 \
	--big_frame_size=8 \
	--frame_size=2 \
	--q_levels=256 \
	--rnn_type=GRU \
	--dim=1024 \
	--n_rnn=1 \
	--seq_len=520 \
	--emb_size=256 \
	--batch_size=64 \
	--optimizer=adam \
	--num_gpus=4

or

sh run.sh

Related projects

This work is based on the flowing implementations with some modifications: