-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathSigma.agda
37 lines (25 loc) · 1.03 KB
/
Sigma.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
data Bool : Set where
false : Bool
true : Bool
If : Set -> Set -> Bool -> Set
If x y true = x
If x y false = y
if : (P : Bool -> Set) -> P true -> P false -> (b : Bool) -> P b
if P x y true = x
if P x y false = y
data Sigma (A : Set)(B : A -> Set) : Set where
wrap : [f : (b : Bool) -> If A (B (f true)) b] -> Sigma A B
fst : (A : Set) -> (B : A -> Set) -> Sigma A B -> A
fst A B (wrap f) = f true
snd : (A : Set) -> (B : A -> Set) -> (p : Sigma A B) -> B (fst A B p)
snd A B (wrap f) = f false
pair : (A : Set) -> (B : A -> Set) -> (x : A) -> (y : B x) -> Sigma A B
pair A B x y = wrap A B (if (If A (B x)) x y)
data Id (A : Set) (x : A) (y : A) : Set where
eq : ((P : A -> Set) -> P x -> P y) -> Id A x y
refl : (A : Set) -> (x : A) -> Id A x x
refl A x = eq A x x (\P px -> px)
lemfst : (A : Set) -> (B : A -> Set) -> (x : A) -> (y : B x) -> Id A (fst A B (pair A B x y)) x
lemfst A B x y = refl A x
lemsnd : (A : Set) -> (B : A -> Set) -> (x : A) -> (y : B x) -> Id (B x) (snd A B (pair A B x y)) y
lemsnd A B x y = refl (B x) y