-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo.py
200 lines (161 loc) · 7.1 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright (c) Meta Platforms, Inc. and affiliates
import logging
import os
import argparse
import sys
import numpy as np
from collections import OrderedDict
import torch
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.engine import default_argument_parser, default_setup, launch
from detectron2.data import transforms as T
logger = logging.getLogger("detectron2")
sys.dont_write_bytecode = True
sys.path.append(os.getcwd())
np.set_printoptions(suppress=True)
from cubercnn.config import get_cfg_defaults
from cubercnn.modeling.proposal_generator import RPNWithIgnore
from cubercnn.modeling.roi_heads import ROIHeads3D
from cubercnn.modeling.meta_arch import RCNN3D, build_model
from cubercnn.modeling.backbone import build_dla_from_vision_fpn_backbone
from cubercnn import util, vis
from pycocotools.coco import COCO
from tqdm import tqdm
def do_test(args, cfg, model):
list_of_ims = util.list_files(os.path.join(args.input_folder, ''), '*')
list_of_ims = [ im for im in list_of_ims if not im.endswith('.json')]
list_of_cats_per_img = util.load_json(args.labels_file)
model.eval()
focal_length = args.focal_length
principal_point = args.principal_point
thres = args.threshold
output_dir = cfg.OUTPUT_DIR
min_size = cfg.INPUT.MIN_SIZE_TEST
max_size = cfg.INPUT.MAX_SIZE_TEST
augmentations = T.AugmentationList([T.ResizeShortestEdge(min_size, max_size, "choice")])
util.mkdir_if_missing(output_dir)
for path in tqdm(list_of_ims):
im_name = util.file_parts(path)[1]
im = util.imread(path)
cats = list_of_cats_per_img[im_name]
if cats == []:
continue
if im is None:
continue
image_shape = im.shape[:2] # h, w
h, w = image_shape
if focal_length == 0:
focal_length_ndc = 4.0
focal_length = focal_length_ndc * h / 2
if len(principal_point) == 0:
px, py = w/2, h/2
else:
px, py = principal_point
K = np.array([
[focal_length, 0.0, px],
[0.0, focal_length, py],
[0.0, 0.0, 1.0]
])
aug_input = T.AugInput(im)
_ = augmentations(aug_input)
image = aug_input.image
batched = [{
'image': torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1))).cuda(),
'height': image_shape[0], 'width': image_shape[1], 'K': K, 'category_list': cats
}]
dets = model(batched)[0]['instances']
n_det = len(dets)
meshes = []
meshes_text = []
if n_det > 0:
for idx, (corners3D, center_cam, center_2D, dimensions, pose, score, cat_idx) in enumerate(zip(
dets.pred_bbox3D, dets.pred_center_cam, dets.pred_center_2D, dets.pred_dimensions,
dets.pred_pose, dets.scores, dets.pred_classes
)):
# skip
if score < thres:
continue
cat = cats[cat_idx]
bbox3D = center_cam.tolist() + dimensions.tolist()
meshes_text.append('{} {:.2f}'.format(cat, score))
color = [c/255.0 for c in util.get_color(idx)]
box_mesh = util.mesh_cuboid(bbox3D, pose.tolist(), color=color)
meshes.append(box_mesh)
print('File: {} with {} dets'.format(im_name, len(meshes)))
if len(meshes) > 0:
im_drawn_rgb, im_topdown, _ = vis.draw_scene_view(im, K, meshes, text=meshes_text, scale=im.shape[0], blend_weight=0.5, blend_weight_overlay=0.85)
im_concat = np.concatenate((im_drawn_rgb, im_topdown), axis=1)
if args.display:
vis.imshow(im_concat)
util.imwrite(im_concat, os.path.join(output_dir, im_name+'_combine.jpg'))
# util.imwrite(im_drawn_rgb, os.path.join(output_dir, im_name+'_boxes.jpg'))
# util.imwrite(im_topdown, os.path.join(output_dir, im_name+'_novel.jpg'))
else:
util.imwrite(im, os.path.join(output_dir, im_name+'_boxes.jpg'))
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
get_cfg_defaults(cfg)
config_file = args.config_file
# store locally if needed
if config_file.startswith(util.CubeRCNNHandler.PREFIX):
config_file = util.CubeRCNNHandler._get_local_path(util.CubeRCNNHandler, config_file)
cfg.merge_from_file(config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
model = build_model(cfg)
logger.info("Model:\n{}".format(model))
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=True
)
with torch.no_grad():
do_test(args, cfg, model)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
epilog=None, formatter_class=argparse.RawDescriptionHelpFormatter,
)
parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file")
parser.add_argument('--input-folder', type=str, help='list of image folders to process', required=True)
parser.add_argument('--labels-file', type=str, help='path to labels file', required=True)
parser.add_argument("--focal-length", type=float, default=0, help="focal length for image inputs (in px)")
parser.add_argument("--principal-point", type=float, default=[], nargs=2, help="principal point for image inputs (in px)")
parser.add_argument("--threshold", type=float, default=0.25, help="threshold on score for visualizing")
parser.add_argument("--display", default=False, action="store_true", help="Whether to show the images in matplotlib",)
parser.add_argument("--eval-only", default=True, action="store_true", help="perform evaluation only")
parser.add_argument("--num-gpus", type=int, default=1, help="number of gpus *per machine*")
parser.add_argument("--num-machines", type=int, default=1, help="total number of machines")
parser.add_argument(
"--machine-rank", type=int, default=0, help="the rank of this machine (unique per machine)"
)
port = 2 ** 15 + 2 ** 14 + hash(os.getuid() if sys.platform != "win32" else 1) % 2 ** 14
parser.add_argument(
"--dist-url",
default="tcp://127.0.0.1:{}".format(port),
help="initialization URL for pytorch distributed backend. See "
"https://pytorch.org/docs/stable/distributed.html for details.",
)
parser.add_argument(
"opts",
help="Modify config options by adding 'KEY VALUE' pairs at the end of the command. "
"See config references at "
"https://detectron2.readthedocs.io/modules/config.html#config-references",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)