-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerations_evaluate_rouge_alignscore.py
284 lines (251 loc) · 10.4 KB
/
generations_evaluate_rouge_alignscore.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "alignscore",
# "datasets<3.0.0",
# "en-core-web-sm",
# "pandas",
# "rouge-score==0.1.2",
# "simple-parsing",
# "tqdm",
# "transformers<=4.47",
# ]
#
# [tool.uv.sources]
# alignscore = { git = "https://github.com/yuh-zha/AlignScore" }
# en-core-web-sm = { url = "https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.7.1/en_core_web_sm-3.7.1.tar.gz" }
# ///
import logging
from dataclasses import dataclass, field
from logging.config import fileConfig
from pathlib import Path
from typing import Literal, Optional
import pandas as pd
import simple_parsing
from datasets import load_metric
from tqdm.auto import tqdm
from tqdm.contrib.logging import logging_redirect_tqdm
fileConfig("logging.ini")
logger = logging.getLogger(__name__)
@dataclass
class Args:
generation_file: Path
alignscore_checkpoint_file: str = (
"AlignScore-large.ckpt" # Filepath to the AlignScore checkpoint, download from https://huggingface.co/yzha/AlignScore/tree/main
)
qa_file: Path = field(default=Path("data/qa.jsonl"))
papers_file: Path = field(default=Path("data/papers.jsonl"))
qa_augmented_answers_file: Optional[Path] = field(
default=Path("data/qa-augmented-answers.jsonl")
)
output_dir: Path = field(default=Path("out"))
override: bool = False
extend: bool = False
alignscore_evaluation_mode: str = "nli_sp"
alignscore_model_size: Literal["base", "large"] = "large"
alignscore_batch_size: int = 8
skip_alignscore: bool = False
def _answer_evidence_concat(answer_evidence: list[dict]) -> str:
"""
Concatenate the evidence sentences,
if they are mapped to a extracted sentence from the paper.
"""
if answer_evidence is None:
return None
answer_evidence = sorted(answer_evidence, key=lambda x: x["idx"])
concat = " \n ".join(ae["sentence"] for ae in answer_evidence)
return concat
def _answer_evidence_concat_paragraphs(paper_df, paper_id, answer_evidence_mapped):
"""
Concatenate the evidence paragraphs,
if they are mapped to a extracted sentence from the paper.
"""
idx = [i for ae in answer_evidence_mapped for i in ae["idx"]]
paper_sents = paper_df[(paper_df.paper_id == paper_id) & (paper_df.idx.isin(idx))]
pidx = paper_sents.pidx.unique()
paper_paras = paper_df[
(paper_df.paper_id == paper_id) & (paper_df.pidx.isin(pidx))
].sort_values("pidx")
concat = " \n ".join(paper_paras.content)
return concat
def main(args: Args):
out_file = args.output_dir / f"metrics-{args.generation_file.name}"
if out_file.exists() and not args.override and not args.extend:
logger.info(
f"{out_file} exists. Skipping, because `override=False` and `extend=False`."
)
elif out_file.exists() and args.extend:
df_computed = pd.read_json(out_file, lines=True)
already_computed_metrics = list(df_computed.columns)
already_computed_metrics.remove("paper_id")
already_computed_metrics.remove("question_id")
logger.info(f"Found already computed metrics: {already_computed_metrics}")
else:
already_computed_metrics = []
# Load the data
logger.info(f"Loading data from {args.generation_file}.")
gen_df = pd.read_json(args.generation_file, lines=True)
qa_df = pd.read_json(args.qa_file, lines=True)
paper_df = pd.read_json(args.papers_file, lines=True)
# concatenate the 'content' column of paper_df per paper_id
full_text_df = paper_df.groupby("paper_id")["content"].apply(" ".join).reset_index()
full_text_df.rename(columns={"content": "full_text"}, inplace=True)
# Preprocess generations
logger.info("Preprocessing generations.")
# Add answer evidence and answer free form to the generated data
gen_df = pd.merge(
gen_df,
qa_df[
[
"paper_id",
"question_id",
"answerable_mapped",
"answer_evidence_mapped",
"answer_free_form",
]
],
on=["paper_id", "question_id"],
how="left",
)
if args.qa_augmented_answers_file is not None:
# if provided, add `augmented_answer_free_form` column to qa_df
qa_augmented_answers_df = pd.read_json(
args.qa_augmented_answers_file, lines=True
)
logger.info(
f"Loaded augmented answers from {args.qa_augmented_answers_file}. {qa_augmented_answers_df.columns=}"
)
gen_df = pd.merge(
gen_df,
qa_augmented_answers_df[
["paper_id", "question_id", "augmented_answer_free_form"]
],
on=["paper_id", "question_id"],
how="left",
)
# drop rows where answerable_mapped is False or None
gen_df = gen_df[gen_df.answerable_mapped == True]
# Add the full text of the paper to the generated data
gen_df = pd.merge(
gen_df,
full_text_df[["paper_id", "full_text"]],
on="paper_id",
how="left",
)
# Concatenate the evidence sentences
gen_df["answer_evidence_mapped_concat"] = gen_df.answer_evidence_mapped.apply(
_answer_evidence_concat
)
# Concatenate the evidence paragraphs
gen_df["answer_evidence_para_concat"] = gen_df.apply(
lambda x: _answer_evidence_concat_paragraphs(
paper_df, x.paper_id, x.answer_evidence_mapped
),
axis=1,
)
# maybe merge with the previously computed
if args.extend and already_computed_metrics:
gen_df = pd.merge(
gen_df, df_computed, on=["paper_id", "question_id"], how="left"
)
logger.info("Computing metrics.")
# Compute the metrics for the different context-generation pairs
context_generation_cols = [
# ("answer_evidence_mapped_concat", "answer_free_form"),
# ("answer_evidence_mapped_concat", "generation"),
("answer_evidence_para_concat", "answer_free_form"),
("answer_evidence_para_concat", "generation"),
("answer_free_form", "generation"),
# ("full_text", "answer_free_form"),
# ("full_text", "generation"),
]
if args.qa_augmented_answers_file is not None:
context_generation_cols.extend(
[
# ("answer_evidence_mapped_concat", "augmented_answer_free_form"),
("answer_evidence_para_concat", "augmented_answer_free_form"),
("answer_free_form", "augmented_answer_free_form"),
("augmented_answer_free_form", "answer_free_form"),
("augmented_answer_free_form", "generation"),
]
)
logger.info(f"Evaluating over columns: {context_generation_cols=}")
col_abbr = {
"answer_evidence_mapped_concat": "aem",
"answer_evidence_para_concat": "aep",
"answer_free_form": "ff",
"augmented_answer_free_form": "aff",
"generation": "gen",
"full_text": "ft",
}
if not args.skip_alignscore:
logger.info(f"Loading AlignScore.")
import torch # isort: skip
from alignscore import AlignScore # isort: skip
align_evaluator = AlignScore(
model=f"roberta-{args.alignscore_model_size}",
batch_size=args.alignscore_batch_size,
device="cuda" if torch.cuda.is_available() else "cpu",
ckpt_path=args.alignscore_checkpoint_file,
evaluation_mode=args.alignscore_evaluation_mode,
verbose=True,
)
rouge_evaluator = load_metric(
"rouge",
experiment_id=f"rouge-{args.generation_file.name}",
trust_remote_code=True,
)
# times 2 for rouge and alignscore
with tqdm(total=len(context_generation_cols) * 2, ncols=80) as pbar:
for context_col, generation_col in context_generation_cols:
eval_prefix = f"{col_abbr[context_col]}-{col_abbr[generation_col]}"
mask = gen_df[context_col].notnull() & gen_df[generation_col].notnull()
paper_ids, question_ids, contexts, generations = gen_df[mask][
["paper_id", "question_id", context_col, generation_col]
].values.T
pbar.set_description(
f"{col_abbr[context_col]} -> {col_abbr[generation_col]} R"
)
if args.override or (
f"{eval_prefix}-rougel-fmeasure" not in already_computed_metrics
):
for use_stemmer in [True, False]:
rouge_scores = rouge_evaluator.compute(
predictions=contexts,
references=generations,
rouge_types=["rouge1", "rouge2", "rougeL", "rougeLsum"],
use_aggregator=False, # get individual scores per example
use_stemmer=use_stemmer,
)
stemmer_key = "stemmer" if use_stemmer else "no_stemmer"
for rouge_key, rouge_value in rouge_scores.items():
rouge_key = rouge_key.lower()
gen_df.loc[
mask, f"{eval_prefix}-{rouge_key}-{stemmer_key}-precision"
] = [r.precision for r in rouge_value]
gen_df.loc[
mask, f"{eval_prefix}-{rouge_key}-{stemmer_key}-recall"
] = [r.recall for r in rouge_value]
gen_df.loc[
mask, f"{eval_prefix}-{rouge_key}-{stemmer_key}-fmeasure"
] = [r.fmeasure for r in rouge_value]
pbar.update(1)
pbar.set_description(
f"{col_abbr[context_col]} -> {col_abbr[generation_col]} AS"
)
if not args.skip_alignscore and (
args.override
or (f"{eval_prefix}-alignscore" not in already_computed_metrics)
):
align_scores = align_evaluator.score(contexts, generations)
gen_df.loc[mask, f"{eval_prefix}-alignscore"] = align_scores
pbar.update(1)
metric_cols = [c for c in gen_df.columns if "rouge" in c or "alignscore" in c]
gen_df[["paper_id", "question_id", *metric_cols]].to_json(
out_file, orient="records", lines=True
)
if __name__ == "__main__":
args, _ = simple_parsing.parse_known_args(Args)
with logging_redirect_tqdm():
logger.info(args)
main(args)