You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+12-13Lines changed: 12 additions & 13 deletions
Original file line number
Diff line number
Diff line change
@@ -2,13 +2,13 @@
2
2
3
3
## Publication
4
4
5
-
* Xiang Ren\*, Ahmed El-Kishky, Chi Wang, Fangbo Tao, Clare R. Voss, Heng Ji, Jiawei Han, "**[ClusType: Effective Entity Recognition and Typing by Relation Phrase-Based Clustering](http://web.engr.illinois.edu/~xren7/fp611-ren.pdf)**”, Proc. of 2015 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD'15), Sydney, Australia, August 2015. ([Slides](http://web.engr.illinois.edu/~xren7/KDD15-ClusType_v3.pdf))
5
+
*[Xiang Ren](http://web.engr.illinois.edu/~xren7/)\*, Ahmed El-Kishky, Chi Wang, Fangbo Tao, Clare R. Voss, Heng Ji, Jiawei Han, "**[ClusType: Effective Entity Recognition and Typing by Relation Phrase-Based Clustering](http://web.engr.illinois.edu/~xren7/fp611-ren.pdf)**”, Proc. of 2015 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD'15), Sydney, Australia, August 2015. ([Slides](http://web.engr.illinois.edu/~xren7/KDD15-ClusType_v3.pdf))
6
6
7
-
* Xiang Ren\*, Ahmed El-Kishky, Chi Wang, Jiawei Han, "**[Automatic Entity Recognition and Typing from Massive Text Corpora: A Phrase and Network Mining Approach](http://research.microsoft.com/en-us/people/chiw/kdd15tutorial.aspx)**”, Proc. of 2015 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD'15 Conference Tutorial), Sydney, Australia, August 2015. ([Website](http://research.microsoft.com/en-us/people/chiw/kdd15tutorial.aspx)) ([Slides](http://hanj.cs.illinois.edu/kdd-15/UIUC-Tutorial.pdf))
7
+
*[Xiang Ren](http://web.engr.illinois.edu/~xren7/)\*, Ahmed El-Kishky, Chi Wang, Jiawei Han, "**[Automatic Entity Recognition and Typing from Massive Text Corpora: A Phrase and Network Mining Approach](http://research.microsoft.com/en-us/people/chiw/kdd15tutorial.aspx)**”, Proc. of 2015 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD'15 Conference Tutorial), Sydney, Australia, August 2015. ([Website](http://research.microsoft.com/en-us/people/chiw/kdd15tutorial.aspx)) ([Slides](http://hanj.cs.illinois.edu/kdd-15/UIUC-Tutorial.pdf))
8
8
9
9
## Note
10
10
11
-
"./result" folder contains typed entity mentions on a sample of 50k Yelp reviews.
11
+
"./result" folder contains results on a sample of 50k Yelp reviews.
- Format: "docId \TAB segmented sentence". Segments are separated by ",". Entity mention candidates are marked with ":EP". Relation phrases are marked with ":RP".
76
+
- Format: "docId \TAB segmented sentence \n".
77
+
- Segments are separated by ",". Entity mention candidates are marked with ":EP". Relation phrases are marked with ":RP".
77
78
```
78
79
SegmentOutFile='result/segment.txt'
79
80
```
80
81
81
82
Output: entity linking output file.
82
-
- Format: "docId \TAB entity name \TAB Original Freebase Type \TAB Refined Type \TAB Freebase EntityID \TAB Similarity Score \TAB Relative Rank".
83
-
- Seed file for Yelp dataset can be download from [here](https://www.dropbox.com/s/w628rwpb3kbmuea/seed_yelp.txt?dl=0).
84
-
- Seed file for NYT dataset can be downloaded from [here](https://www.dropbox.com/s/k0qzsvbbpngptjt/seed_nyt.txt?dl=0).
83
+
- Format: "docId \TAB entity name \TAB Original Freebase Type \TAB Refined Type \TAB Freebase EntityID \TAB Similarity Score \TAB Relative Rank \n".
84
+
-Download [Seed file](https://www.dropbox.com/s/w628rwpb3kbmuea/seed_yelp.txt?dl=0) for Yelp dataset.
85
+
-Download [Seed file](https://www.dropbox.com/s/k0qzsvbbpngptjt/seed_nyt.txt?dl=0) for NYT dataset.
85
86
86
-
NOTE: Our entity linking module calls [DBpediaSpotLight Web service](https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki/Web-service), which has limited querying speed. This process can be largely accelarated by installing the tool on your local machine. See [here](https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki/Installation) for details.
87
+
NOTE: Our entity linking module calls [DBpediaSpotLight Web service](https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki/Web-service), which has limited querying speed. This process can be largely accelarated by installing the tool on your local machine[Link](https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki/Installation).
0 commit comments