-
-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathsvm_strategy.py
executable file
·166 lines (131 loc) · 4.9 KB
/
svm_strategy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import matplotlib.pyplot as plt
import pandas as pd
import talib as ta
from base import Strategy
from data.data_utils import load_data, load_from_file
from IPython.display import display
from model.svm import SVMModel
# Step 1: load dataset and generate features
def prepare_data(
codes=["000300.SH", "399006.SZ"], start_time="20100101", end_time="20211231"
):
df = load_data(codes, start_time, end_time)
df["rsi"] = ta.RSI(df.close, timeperiod=14)
types = ["SMA", "EMA", "WMA", "DEMA", "TEMA", "TRIMA", "KAMA", "MAMA", "T3"]
for i in range(len(types)):
df[types[i] + "5"] = ta.MA(df.close, timeperiod=5, matype=i)
df[types[i] + "30"] = ta.MA(df.close, timeperiod=30, matype=i)
df[types[i] + "120"] = ta.MA(df.close, timeperiod=120, matype=i)
df["macd"], df["macdsignal"], df["macdhist"] = ta.MACD(
df.close, fastperiod=12, slowperiod=26, signalperiod=9
)
df["obv"] = ta.OBV(df["close"], df["volume"])
df["dcperiod"] = ta.HT_DCPERIOD(df.close)
df["dcphase"] = ta.HT_DCPHASE(df.close)
df["inhpase"], df["quadrature"] = ta.HT_PHASOR(df.close)
df["sine"], df["leadsine"] = sine, leadsine = ta.HT_SINE(df.close)
df["trendmode"] = ta.HT_TRENDMODE(df.close)
df["atr"] = ta.ATR(df.high, df.low, df.close, timeperiod=14)
df["natr"] = ta.NATR(df.high, df.low, df.close, timeperiod=14)
df["trange"] = ta.TRANGE(df.high, df.low, df.close)
df["label"] = df["close"].shift(5) / df["close"] - 1
return df
# Step 2: train model and prepare strategy
class MLStrategy(object):
def __init__(self, df, topk=8):
super(MLStrategy, self).__init__()
svm = SVMModel()
svm.fit(df, train_valid_date="20180101")
results = svm.predict()
df["pred_score"] = results
self.K = topk
def __call__(self, context):
bar = context["bar"].copy()
if "selected" in context.keys():
if len(context["selected"]) == 0:
return False
to_select = []
for s in context["selected"]:
if s in bar.index:
to_select.append(s)
bar = bar.loc[to_select]
bar.sort_values(by="pred_score", ascending=False, inplace=True) # 倒序
symbols = bar.index[: self.K]
context["selected"] = symbols
n = len(context["selected"])
if n > 0:
context["weights"] = {code: 1 / n for code in symbols}
else:
context["weights"] = {}
return False
# Step 3: backtest
class Backtest:
def __init__(self, df):
self.df = df
self.dates = self.df.index.unique()
self.observers = []
def onbar(self, index, date):
df_bar = self.df.loc[date]
if type(df_bar) is pd.Series:
df_bar = df_bar.to_frame().T
df_bar.index = df_bar["code"]
self.strategy.onbar(index, date, df_bar)
def run(self, s):
self.strategy = s
for index, date in enumerate(self.dates):
self.onbar(index, date)
return self.get_results()
def get_results(self):
s = self.strategy
df = s.acc.get_results_df()
return df
# Step 4: analysis
def analysis(start, end, benchmarks=[]):
equities = []
for benchmark in benchmarks:
bench_df = load_from_file(benchmark)[start:end]
se = (bench_df["rate"] + 1).cumprod()
se.name = benchmark
equities.append(se)
path = os.path.dirname(__file__)
filename = os.path.dirname(path) + "/results/second_test.csv"
if os.path.exists(filename):
df = pd.read_csv(filename)
df["date"] = df["date"].apply(lambda x: str(x))
df.index = df["date"]
se = (df["rate"] + 1).cumprod()
se.name = "svm strategy"
equities.append(se)
df_equities = pd.concat(equities, axis=1)
df_equities.dropna(inplace=True)
print(df_equities)
from performance import PerformanceUtils
df_ratios, df_corr, df_years = PerformanceUtils().calc_equity(df_equity=df_equities)
return df_equities, df_ratios, df_corr, df_years
if __name__ == "__main__":
date_start = "20100101"
date_end = "20211231"
df = prepare_data(
codes=["000300.SH", "000905.SH", "399006.SZ", "399324.SZ"],
start_time=date_start,
end_time=date_end,
)
algo = MLStrategy(df, topk=3)
s = Strategy(algo=algo)
b = Backtest(df=df)
df = b.run(s)
path = os.path.dirname(__file__)
df.to_csv(os.path.dirname(path) + "/results/second_test.csv")
df_equities, df_ratios, df_corr, df_years = analysis(
start=date_start, end=date_end, benchmarks=["000300.SH"]
)
display(df_ratios)
fig = plt.figure(figsize=(8, 6))
ax1 = fig.add_subplot(2, 1, 1)
ax2 = fig.add_subplot(2, 1, 2)
df_equities.plot(ax=ax1)
if df_years is not None:
print(df_years)
df_years.T.plot(kind="bar", ax=ax2, use_index=True)
plt.show()