-
-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathsignal_strategy.py
executable file
·152 lines (118 loc) · 4.13 KB
/
signal_strategy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import sys
sys.path.append(r"/Users/charmve/Qbot/pytrader/data")
# print(sys.path)
import os
import matplotlib.pyplot as plt
import pandas as pd
import talib as ta
from base import Strategy
from data_utils import load_data, load_from_file
from IPython.display import display
# Step 1: load dataset and generate features
def prepare_data(
codes=["000300.SH", "399006.SZ"], start_time="20100101", end_time="20211231"
):
df = load_data(codes, start_time, end_time)
df["rsi"] = ta.RSI(df.close, timeperiod=14)
df["to_buy"] = ""
df.loc[df["rsi"] <= 30, "to_buy"] = True
df["to_buy"] = df["to_buy"].astype("bool")
df["to_sell"] = ""
df.loc[df["rsi"] >= 70, "to_sell"] = True
df["to_sell"] = df["to_sell"].astype("bool")
print("> step 1 is Successfully.")
return df
# Step 2: prepare strategy
class SelectBySignal(object):
def __init__(self, signal_buy="to_buy", signal_sell="to_sell"):
super(SelectBySignal, self).__init__()
self.signal_buy = signal_buy
self.signal_sell = signal_sell
def __call__(self, context):
bar = context["bar"].copy()
acc = context["acc"]
holding = acc.get_holding_instruments()
to_buy = list(bar[bar[self.signal_buy]].index)
to_sell = list(bar[bar[self.signal_sell]].index)
instruments = to_buy + holding
to_selected = []
for s in instruments:
if s not in to_sell:
to_selected.append(s)
context["selected"] = to_selected
n = len(to_selected)
if n > 0:
context["weights"] = {code: 1 / n for code in to_selected}
else:
context["weights"] = {}
print("> step 2 is Successfully.")
return False
# Step 3: backtest
class Backtest:
def __init__(self, df):
self.df = df
self.dates = self.df.index.unique()
self.observers = []
def onbar(self, index, date):
df_bar = self.df.loc[date]
if type(df_bar) is pd.Series:
df_bar = df_bar.to_frame().T
df_bar.index = df_bar["code"]
self.strategy.onbar(index, date, df_bar)
def run(self, s):
self.strategy = s
for index, date in enumerate(self.dates):
self.onbar(index, date)
return self.get_results()
def get_results(self):
s = self.strategy
df = s.acc.get_results_df()
return df
# Step 4: analysis
def analysis(start, end, benchmarks=[]):
equities = []
for benchmark in benchmarks:
bench_df = load_from_file(benchmark)[start:end]
se = (bench_df["rate"] + 1).cumprod()
se.name = benchmark
equities.append(se)
path = os.path.dirname(__file__)
filename = os.path.dirname(path) + "/results/first_test.csv"
if os.path.exists(filename):
df = pd.read_csv(filename)
df["date"] = df["date"].apply(lambda x: str(x))
df.index = df["date"]
se = (df["rate"] + 1).cumprod()
se.name = "strategy"
equities.append(se)
df_equities = pd.concat(equities, axis=1)
df_equities.dropna(inplace=True)
print(df_equities)
from performance import PerformanceUtils
df_ratios, df_corr, df_years = PerformanceUtils().calc_equity(df_equity=df_equities)
return df_equities, df_ratios, df_corr, df_years
if __name__ == "__main__":
date_start = "20100101"
date_end = "20211231"
df = prepare_data(
codes=["000300.SH", "399006.SZ"], start_time=date_start, end_time=date_end
)
algo = SelectBySignal(signal_buy="to_buy", signal_sell="to_sell")
s = Strategy(algo=algo)
b = Backtest(df=df)
df = b.run(s)
path = os.path.dirname(__file__)
# print(path)
df.to_csv(os.path.dirname(path) + "/results/first_test.csv")
df_equities, df_ratios, df_corr, df_years = analysis(
start=date_start, end=date_end, benchmarks=["000300.SH"]
)
display(df_ratios)
fig = plt.figure(figsize=(8, 6))
ax1 = fig.add_subplot(2, 1, 1)
ax2 = fig.add_subplot(2, 1, 2)
df_equities.plot(ax=ax1)
if df_years is not None:
print(df_years)
df_years.T.plot(kind="bar", ax=ax2, use_index=True)
plt.show()