-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
499 lines (426 loc) · 23.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
# HAT: Hardware-Aware Transformers for Efficient Natural Language Processing
# Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan and Song Han
# The 58th Annual Meeting of the Association for Computational Linguistics (ACL), 2020.
# Paper: https://arxiv.org/abs/2005.14187
# Project page: https://hanruiwang.me/project_pages/hat/
import collections
import math
import random
import torch
import pdb
import sys
import copy
from fairseq import checkpoint_utils, distributed_utils, options, progress_bar, tasks, utils, bleu
from fairseq.data import iterators, dictionary
from fairseq.trainer import Trainer
from fairseq.meters import AverageMeter, StopwatchMeter
from copy import deepcopy
def main(args, init_distributed=False):
utils.import_user_module(args)
utils.handle_save_path(args)
assert args.max_tokens is not None or args.max_sentences is not None, \
'Must specify batch size either with --max-tokens or --max-sentences'
# Initialize CUDA and distributed training
if torch.cuda.is_available() and not args.cpu:
torch.cuda.set_device(args.device_id)
torch.manual_seed(args.seed)
if init_distributed:
args.distributed_rank = distributed_utils.distributed_init(args)
if distributed_utils.is_master(args):
checkpoint_utils.verify_checkpoint_directory(args.save_dir)
# Print args
print(f"| Configs: {args}")
# Setup task, e.g., translation, language modeling, etc.
task = tasks.setup_task(args)
# Load valid dataset (we load training data below, based on the latest checkpoint)
for valid_sub_split in args.valid_subset.split(','):
task.load_dataset(valid_sub_split, combine=False, epoch=0)
# Build model and criterion and generator
model = task.build_model(args)
criterion = task.build_criterion(args)
generator = task.build_generator(args)
print(f"| Model: {args.arch} \n| Criterion: {criterion.__class__.__name__}")
# Log architecture
if args.train_subtransformer:
print(" \n\n\t\tWARNING!!! Training one single SubTransformer\n\n")
print(f"| SubTransformer Arch: {utils.get_subtransformer_config(args)} \n")
else:
print(" \n\n\t\tWARNING!!! Training SuperTransformer\n\n")
print(f"| SuperTransformer Arch: {model} \n")
# Log model size
if args.train_subtransformer:
# print("todo: fix the error, assert weight issue")
print(f"| SubTransformer size (without embedding weights): {model.get_sampled_params_numel(utils.get_subtransformer_config(args))}")
embed_size = args.decoder_embed_dim_subtransformer * len(task.tgt_dict)
print(f"| Embedding layer size: {embed_size} \n")
else:
model_s = 0
# if use model.state_dict, then will add 2 more parameters, they are encoder.version and decoder.version. Should not count them
for name, param in model.named_parameters():
if 'embed' not in name:
model_s += param.numel()
print(f"| SuperTransofmer model size (without embedding weights): {model_s}")
print(f"| Embedding layer size: {sum(p.numel() for p in model.parameters() if p.requires_grad) - model_s} \n")
'''
# get lot of model sizes
# python -B train.py --configs=configs/wmt14.en-fr/supertransformer/space0.yml --update-freq=32 --save-dir /tmp --encoder-n-experts 1 2 --decoder-n-experts 1 2 --no-epoch-checkpoints
import json
dummy=True
w = open("/scratch/st-janetwer-1/ganeshjw/objects/nas-moe/jul5_fine_latency_pred_feats/moe_2e/model_sizes/wmt14.en-de_gpu_titanxp_dummy.csv", "w")
for line in open("/scratch/st-janetwer-1/ganeshjw/objects/nas-moe/jul5_fine_latency_pred_feats/moe_2e/genlatdata/wmt14.en-de_gpu_titanxp_dummy.csv"):
line = line.strip()
content = json.loads(line)
config = {
'encoder': {
'encoder_embed_dim': content['encoder_encoder_embed_dim'],
'encoder_layer_num': content['encoder_encoder_layer_num'],
'encoder_ffn_embed_dim': content['encoder_encoder_ffn_embed_dim'],
'encoder_self_attention_heads': content['encoder_encoder_self_attention_heads'],
'encoder_n_experts': content['encoder_encoder_n_experts'] + [1] * (content['encoder_encoder_layer_num']-len(content['encoder_encoder_n_experts'])),
'encoder_num_experts_to_route': [1]*content['encoder_encoder_layer_num'],
},
'decoder': {
'decoder_embed_dim': content['decoder_decoder_embed_dim'],
'decoder_layer_num': content['decoder_decoder_layer_num'],
'decoder_ffn_embed_dim': content['decoder_decoder_ffn_embed_dim'],
'decoder_self_attention_heads': content['decoder_decoder_self_attention_heads'],
'decoder_ende_attention_heads': content['decoder_decoder_ende_attention_heads'],
'decoder_arbitrary_ende_attn': content['decoder_decoder_ende_attention_heads'],
'decoder_n_experts': content['decoder_decoder_n_experts'] + [1] * (content['decoder_decoder_layer_num']-len(content['decoder_decoder_n_experts'])),
'decoder_num_experts_to_route': [1]*content['decoder_decoder_layer_num'],
}
}
content["model_size"] = model.get_sampled_params_numel(config)
extra_params = 0
if not dummy:
if "encoder_n_experts" in config["encoder"]:
max_num_expert = -1
for num_expert, encoder_ffn_dim in zip(config["encoder"]["encoder_n_experts"], config["encoder"]["encoder_ffn_embed_dim"]):
max_num_expert = max(max_num_expert, num_expert)
for num_expert, encoder_ffn_dim in zip(config["encoder"]["encoder_n_experts"], config["encoder"]["encoder_ffn_embed_dim"]):
if max_num_expert > 1:
extra_params += (max_num_expert-1) * (2*encoder_ffn_dim*config["encoder"]["encoder_embed_dim"])
if "decoder_n_experts" in config["decoder"]:
max_num_expert = -1
for num_expert, decoder_ffn_dim in zip(config["decoder"]["decoder_n_experts"], config["decoder"]["decoder_ffn_embed_dim"]):
max_num_expert = max(max_num_expert, num_expert)
for num_expert, decoder_ffn_dim in zip(config["decoder"]["decoder_n_experts"], config["decoder"]["decoder_ffn_embed_dim"]):
if max_num_expert > 1:
extra_params += (max_num_expert-1) * (2*decoder_ffn_dim*config["decoder"]["decoder_embed_dim"])
else:
if "encoder_n_experts" in config["encoder"]:
max_num_expert = -1
for num_expert, encoder_ffn_dim in zip(config["encoder"]["encoder_n_experts"], config["encoder"]["encoder_ffn_embed_dim"]):
max_num_expert = max(max_num_expert, num_expert)
for num_expert, encoder_ffn_dim in zip(config["encoder"]["encoder_n_experts"], config["encoder"]["encoder_ffn_embed_dim"]):
if max_num_expert > 1:
extra_params += (max_num_expert-1) * (2*encoder_ffn_dim*config["encoder"]["encoder_embed_dim"])
if num_expert == 1:
extra_params += (2*encoder_ffn_dim*config["encoder"]["encoder_embed_dim"])
if "decoder_n_experts" in config["decoder"]:
max_num_expert = -1
for num_expert, decoder_ffn_dim in zip(config["decoder"]["decoder_n_experts"], config["decoder"]["decoder_ffn_embed_dim"]):
max_num_expert = max(max_num_expert, num_expert)
for num_expert, decoder_ffn_dim in zip(config["decoder"]["decoder_n_experts"], config["decoder"]["decoder_ffn_embed_dim"]):
if max_num_expert > 1:
extra_params += (max_num_expert-1) * (2*decoder_ffn_dim*config["decoder"]["decoder_embed_dim"])
if num_expert == 1:
extra_params += (2*decoder_ffn_dim*config["decoder"]["decoder_embed_dim"])
content["active_model_size"] = content["model_size"] - extra_params
w.write(json.dumps(content))
w.write("\n")
w.close()
sys.exit(0)
'''
# specify the length of the dummy input for profile
# for iwslt, the average length is 23, for wmt, that is 30
dummy_sentence_length_dict = {'iwslt': 23, 'wmt': 30}
if 'iwslt' in args.arch:
dummy_sentence_length = dummy_sentence_length_dict['iwslt']
elif 'wmt' in args.arch:
dummy_sentence_length = dummy_sentence_length_dict['wmt']
else:
raise NotImplementedError
dummy_src_tokens = [2] + [7] * (dummy_sentence_length - 1)
dummy_prev = [7] * (dummy_sentence_length - 1) + [2]
# profile the overall FLOPs number
if args.profile_flops:
import torchprofile
config_subtransformer = utils.get_subtransformer_config(args)
model.set_sample_config(config_subtransformer, arch_embeds=utils.get_config_features(config_subtransformer, None))
model.profile(mode=True)
macs = torchprofile.profile_macs(model, args=(torch.tensor([dummy_src_tokens], dtype=torch.long), torch.tensor([30]), torch.tensor([dummy_prev], dtype=torch.long)))
model.profile(mode=False)
last_layer_macs = config_subtransformer['decoder']['decoder_embed_dim'] * dummy_sentence_length * len(task.tgt_dict)
print(f"| Total FLOPs: {macs * 2}")
print(f"| Last layer FLOPs: {last_layer_macs * 2}")
print(f"| Total FLOPs without last layer: {(macs - last_layer_macs) * 2} \n")
exit(0)
# Build trainer
trainer = Trainer(args, task, model, criterion)
print(f"| Training on {args.distributed_world_size} GPUs")
print(f"| Max tokens per GPU = {args.max_tokens} and max sentences per GPU = {args.max_sentences} \n")
# Measure model latency, the program will exit after profiling latency
if args.latcpu or args.latgpu:
utils.measure_latency(args, model, dummy_src_tokens, dummy_prev)
# reliable latency
'''
import numpy as np
latency = []
random.seed(123)
for i in range(10):
dummy_src_tokens = [random.randint(1, 10000) for i in range(30)]
dummy_prev = [random.randint(1, 10000) for i in range(30)]
latency.append(utils.measure_latency(args, model, dummy_src_tokens, dummy_prev))
print(latency)
print("reliable latency = %.2f (%.2f)"%(np.mean(latency), np.std(latency)))
'''
exit(0)
# Load the latest checkpoint if one is available and restore the corresponding train iterator
extra_state, epoch_itr = checkpoint_utils.load_checkpoint(args, trainer)
# Evaluate the SubTransformer
if args.validate_subtransformer:
config = utils.get_subtransformer_config(args)
trainer.set_sample_config(config, arch_embeds=utils.get_config_features(config, args))
valid_loss = validate(args, trainer, task, epoch_itr, ['valid'], 'SubTransformer', generator)
print(f"| SubTransformer validation loss:{valid_loss}")
# Loop boundaries
max_epoch = args.max_epoch or math.inf
max_update = args.max_update or math.inf
lr = trainer.get_lr()
train_meter = StopwatchMeter()
train_meter.start()
valid_subsets = args.valid_subset.split(',')
represent_configs = utils.get_represent_configs(args)
# Main training loop
while lr > args.min_lr and epoch_itr.epoch < max_epoch and trainer.get_num_updates() < max_update:
# train for one epoch
train(args, trainer, task, epoch_itr, generator=generator)
if not args.disable_validation and epoch_itr.epoch % args.validate_interval == 0:
for k, v in represent_configs.items():
trainer.set_sample_config(config=v, arch_embeds=utils.get_config_features(v, args))
valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets, sampled_arch_name=k, generator=generator)
else:
valid_losses = [None]
# update the best loss and get current lr; the real lr scheduling is done in trainer.train_step()
lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])
# save checkpoint epoch level
if epoch_itr.epoch % args.save_interval == 0:
checkpoint_utils.save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
train_meter.stop()
print('| Done training in {:.1f} seconds'.format(train_meter.sum))
def train(args, trainer, task, epoch_itr, generator=None):
"""Train the model for one epoch."""
# Update parameters every N batches
update_freq = args.update_freq[epoch_itr.epoch - 1] \
if epoch_itr.epoch <= len(args.update_freq) else args.update_freq[-1]
# Initialize data iterator
itr = epoch_itr.next_epoch_itr(
fix_batches_to_gpus=args.fix_batches_to_gpus,
shuffle=(epoch_itr.epoch >= args.curriculum),
)
itr = iterators.GroupedIterator(itr, update_freq)
progress = progress_bar.build_progress_bar(
args, itr, epoch_itr.epoch,
)
extra_meters = collections.defaultdict(lambda: AverageMeter())
valid_subsets = args.valid_subset.split(',')
max_update = args.max_update or math.inf
represent_configs = utils.get_represent_configs(args)
ncount = 0
for i, samples in enumerate(progress, start=epoch_itr.iterations_in_epoch):
if args.train_subtransformer:
# training one SubTransformer only
configs = [utils.get_subtransformer_config(args)]
else:
# training SuperTransformer by randomly sampling SubTransformers
configs = [utils.sample_configs(utils.get_all_choices(args), reset_rand_seed=True, rand_seed=trainer.get_num_updates(), super_decoder_num_layer=args.decoder_layers)]
for i in range(4):
configs += [utils.sample_configs(utils.get_all_choices(args), reset_rand_seed=True, rand_seed=trainer.get_num_updates(), super_decoder_num_layer=args.decoder_layers)]
if args.sandwich_rule == 1:
# configs += [represent_configs["largest_arbitrary1"], represent_configs["smallest_arbitrary1"]]
configs += [represent_configs["largest_arbitrary1"]]
new_config1 = copy.deepcopy(represent_configs["smallest_arbitrary1"])
new_config1["encoder"]["encoder_embed_dim"] = 640
new_config1["decoder"]["decoder_embed_dim"] = 640
new_config2 = copy.deepcopy(represent_configs["largest_arbitrary1"])
new_config2["encoder"]["encoder_embed_dim"] = 512
new_config2["decoder"]["decoder_embed_dim"] = 512
configs = [represent_configs["smallest_arbitrary1"], represent_configs["largest_arbitrary1"]]
log_output = trainer.train_step(samples, configs=configs, args=args)
ncount += 1
if ncount > 55:
sys.exit(0)
if log_output is None:
continue
# log mid-epoch stats
stats = utils.get_training_stats(trainer)
for k, v in log_output.items():
if k in ['loss', 'nll_loss', 'ntokens', 'nsentences', 'sample_size']:
continue # these are already logged above
if 'loss' in k or k == 'accuracy':
extra_meters[k].update(v, log_output['sample_size'])
else:
extra_meters[k].update(v)
stats[k] = extra_meters[k].avg
utils.log_arch_info(stats, configs[0])
progress.log(stats, tag='train', step=stats['num_updates'])
# ignore the first mini-batch in words-per-second calculation
if i == 0:
trainer.get_meter('wps').reset()
num_updates = trainer.get_num_updates()
if (
not args.disable_validation
and args.save_interval_updates > 0
and num_updates % args.save_interval_updates == 0
and num_updates > 0
):
for k, v in represent_configs.items():
trainer.set_sample_config(config=v, arch_embeds=utils.get_config_features(v, args))
valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets, sampled_arch_name=k, generator=generator)
checkpoint_utils.save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
if num_updates >= max_update:
break
# log end-of-epoch stats
stats = utils.get_training_stats(trainer)
for k, meter in extra_meters.items():
stats[k] = meter.avg
progress.print(stats, tag='train', step=stats['num_updates'])
# reset training meters
for k in [
'train_loss', 'train_nll_loss', 'wps', 'ups', 'wpb', 'bsz', 'gnorm', 'clip',
]:
meter = trainer.get_meter(k)
if meter is not None:
meter.reset()
def validate(args, trainer, task, epoch_itr, subsets, sampled_arch_name, generator):
"""Evaluate the model on the validation set(s) and return the losses."""
valid_losses = []
for subset in subsets:
# Initialize data iterator
def get_itr():
itr = task.get_batch_iterator(
dataset=task.dataset(subset),
max_tokens=args.max_tokens_valid, # TODO: Not doing full valid set, is it okay?
max_sentences=args.max_sentences_valid,
max_positions=utils.resolve_max_positions(
task.max_positions(),
trainer.get_model().max_positions(),
),
ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=args.required_batch_size_multiple,
seed=args.seed,
num_shards=args.distributed_world_size,
shard_id=args.distributed_rank,
num_workers=args.num_workers,
).next_epoch_itr(shuffle=False)
progress = progress_bar.build_progress_bar(
args, itr, epoch_itr.epoch,
prefix='validate on \'{}\' subset'.format(subset),
)
return progress
progress = get_itr()
# reset validation loss meters
for k in ['valid_loss', 'valid_nll_loss', 'valid_bleu']:
meter = trainer.get_meter(k)
if meter is not None:
meter.reset()
extra_meters = collections.defaultdict(lambda: AverageMeter())
#bleu_syss, bleu_refs = [], []
for sample in progress:
log_output = trainer.valid_step(sample)
#log_output, bleu_input = trainer.valid_step(sample, generator)
#bleu_syss += bleu_input[1]
#bleu_refs += bleu_input[0]
for k, v in log_output.items():
if k in ['loss', 'nll_loss', 'ntokens', 'nsentences', 'sample_size']:
continue
extra_meters[k].update(v)
'''
# compute valid bleu score
dict_obj = dictionary.Dictionary()
scorer = bleu.Scorer(dict_obj.pad(), dict_obj.eos(), dict_obj.unk())
for (ref_tok, sys_tok) in zip(bleu_refs, bleu_syss):
sys_tok = dict_obj.encode_line(sys_tok)
ref_tok = dict_obj.encode_line(ref_tok)
scorer.add(ref_tok, sys_tok)
bleu_score = scorer.score(4) # consider ngrams up to this order
'''
# log validation stats
stats = utils.get_valid_stats(trainer, args) # , valid_bleu=bleu_score
for k, meter in extra_meters.items():
stats[k] = meter.avg
# log validation stats
stats = utils.get_valid_stats(trainer, args, extra_meters) # , valid_bleu=bleu_score
stats[sampled_arch_name+'_loss'] = deepcopy(stats['loss'])
stats[sampled_arch_name+'_nll_loss'] = deepcopy(stats['nll_loss'])
for k, meter in extra_meters.items():
stats[k] = meter.avg
progress.print(stats, tag=subset, step=trainer.get_num_updates())
valid_losses.append(
stats[args.best_checkpoint_metric].avg
if args.best_checkpoint_metric == 'loss'
else stats[args.best_checkpoint_metric]
)
return valid_losses
def distributed_main(i, args, start_rank=0):
args.device_id = i
if args.distributed_rank is None: # torch.multiprocessing.spawn
args.distributed_rank = start_rank + i
main(args, init_distributed=True)
def cli_main():
parser = options.get_training_parser()
parser.add_argument('--train-subtransformer', action='store_true', default=False, help='whether train SuperTransformer or SubTransformer')
parser.add_argument('--sub-configs', required=False, is_config_file=True, help='when training SubTransformer, use --configs to specify architecture and --sub-configs to specify other settings')
# for profiling
parser.add_argument('--profile-flops', action='store_true', help='measure the FLOPs of a SubTransformer')
parser.add_argument('--latgpu', action='store_true', help='measure SubTransformer latency on GPU')
parser.add_argument('--latcpu', action='store_true', help='measure SubTransformer latency on CPU')
parser.add_argument('--latiter', type=int, default=300, help='how many iterations to run when measure the latency')
parser.add_argument('--num_workers', type=int, default=0, help='number of workers')
parser.add_argument('--latsilent', action='store_true', help='keep silent when measure latency')
parser.add_argument('--validate-subtransformer', action='store_true', help='evaluate the SubTransformer on the validation set')
options.add_generation_args(parser)
args = options.parse_args_and_arch(parser)
#args.num_workers = 0
if args.latcpu:
args.cpu = True
args.fp16 = False
if args.latgpu or args.latcpu or args.profile_flops:
args.distributed_world_size = 1
if args.pdb:
pdb.set_trace()
if args.distributed_init_method is None:
distributed_utils.infer_init_method(args)
if args.distributed_init_method is not None:
# distributed training
if torch.cuda.device_count() > 1 and not args.distributed_no_spawn:
start_rank = args.distributed_rank
args.distributed_rank = None # assign automatically
torch.multiprocessing.spawn(
fn=distributed_main,
args=(args, start_rank),
nprocs=torch.cuda.device_count(),
)
else:
distributed_main(args.device_id, args)
elif args.distributed_world_size > 1:
# fallback for single node with multiple GPUs
assert args.distributed_world_size <= torch.cuda.device_count()
port = random.randint(10000, 20000)
args.distributed_init_method = 'tcp://localhost:{port}'.format(port=port)
args.distributed_rank = None # set based on device id
if max(args.update_freq) > 1 and args.ddp_backend != 'no_c10d':
print('| NOTE: you may get better performance with: --ddp-backend=no_c10d')
print('-'*80)
print(args.distributed_world_size, args.distributed_init_method, args.ddp_backend)
torch.multiprocessing.spawn(
fn=distributed_main,
args=(args, ),
nprocs=args.distributed_world_size
)
else:
# single GPU training
main(args)
if __name__ == '__main__':
cli_main()