-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCPG_for_2_using_EE.m
81 lines (67 loc) · 2.03 KB
/
CPG_for_2_using_EE.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
% CPG for two odrives using explicit euler method
clc;clear;clf;
tmax = 0.5; % maximal time for ode solution
h = 0.01;
x0 = [0;pi/2];%initial condition
w = 20;%speed
A_L = 20;%left coupling factor
A_R = 20; %right coupling factor
%define parameters of the trajectory
x_on = 0.11;
y_on = 0.2;
x_off = -0.11;
y_off = 0.2;
x_sw = 0;
y_sw = 0.12;
y_origin = (y_off + y_sw)/2;
x_origin = (x_on + x_off)/2;
psi_left = atan((y_off-y_origin)/(x_off-x_origin)) + pi;
psi_right = atan((y_on-y_origin)/(x_on-x_origin));
psi_st = [psi_right,psi_left];
delta_st = [psi_left-psi_right,pi*2-(psi_left-psi_right)];
z_st = polyfit(psi_st, delta_st, 1);
psi_sw = [psi_left,psi_right+pi*2];
delta_sw = [pi*2-(psi_left-psi_right),psi_left-psi_right];
z_sw = polyfit(psi_sw, delta_sw, 1);
%solve the ODE using EE(same as the code in python)
x = x0;
A = zeros(2,tmax/h);
a = 1;
for i = 0:h:tmax
%set the left leg not to move for showing the response of the right leg
x1 = 0;
% x1 = rem(x(1),pi*2);
x2 = rem(x(2),pi*2);
if (psi_right<=x1) && (x1<=psi_left)
delta_psi = polyval(z_st,x1);
elseif x1>psi_left
delta_psi = polyval(z_sw,x1);
else
delta_psi = polyval(z_sw,x1+2*pi);
end
if x1>x2
x2 = x2+pi*2;
end
x(1) = x(1) + h*(w+A_L*sin((x2-x1)-delta_psi));
x(2) = x(2) + h*(w+A_R*sin(delta_psi-(x2-x1)));
A(1,a) = x1;
A(2,a) = x2;
a = a+1;
end
A(3,:) = linspace(0,tmax,tmax/h+1);
%plot the solutions
figure(1)
subplot(2,1,1)
plot(A(3,:) ,A(1,:) ,'LineWidth',2)
hold on;
plot(A(3,:) ,A(2,:) ,'LineWidth',2)
legend('$\theta_L(t)$','$\theta_R(t)$','Interpreter','latex')
title('Time-domain response','Interpreter','latex')
xlabel('Time (s)','Interpreter','latex');
ylabel('$\theta(t)$','Interpreter','latex')
set(gca,'fontsize',14);
subplot(2,1,2)
plot(A(3,:),A(2,:) -A(1,:) ,'LineWidth',2)
xlabel('Time (s)','Interpreter','latex');
ylabel('$\Delta\theta(t)$','Interpreter','latex')
set(gca,'fontsize',14);